
z/OS

IBM Open Class Library User’s Guide
Version 1 Release 2

SC09-4811-01

���

z/OS

IBM Open Class Library User’s Guide
Version 1 Release 2

SC09-4811-01

���

Note!
Before using this information and the product it supports, be sure to read the information in “Notices” on page 393.

Second Edition (October 2001)

This edition applies to Version 1 Release 2 Modification 0 of z/OS C/C++ (5694-A01) and to all subsequent releases
and modifications until otherwise indicated in new editions. This edition replaces SC09-2363-03. Make sure that you
use the correct edition for the level of the program listed above. Also, ensure that you apply all necessary PTFs for
the program.

Order publications through your IBM® representative or the IBM branch office serving your location. Publications are
not stocked at the address below. You can also browse the books on the World Wide Web by clicking on ″The
Library″ link on the z/OS home page. The web address for this page is
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Canada Ltd. Laboratory
Information Development
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario Canada
L67 1C7

If you send comments, include the title and order number of this book, and the page number or topic related to your
comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . ix
Who Should Use This Book . ix
A Note about Examples . ix
z/OS C/C++ and Related Publications x
Hardcopy Books . xiv
Softcopy Books . xiv
Softcopy Examples . xv
z/OS C/C++ on the World Wide Web xv

Where to find more information xvi
Accessing licensed books on the Web xvi
Using LookAt to look up message explanations xvi

About IBM z/OS C/C++ . xix
Changes for z/OS V1R2 . xix

Limitations of Enhanced ASCII xxii
z/OS Language Environment Downward Compatibility xxii

The C/C++ Compilers . xxiii
The C Language . xxiii
The C++ Language . xxiii
Common Features of the z/OS C and C++ Compilers xxiv
z/OS C Compiler Specific Features xxv
z/OS C++ Compiler Specific Features xxv

Class Libraries. xxv
IBM Open Class Library Source xxvi

Utilities . xxvi
The Debug Tool . xxvii
IBM C/C++ Productivity Tools for OS/390 xxvii
z/OS Language Environment xxviii
About Prelinking, Linking, and Binding xxix

Notes on the Prelinking Process xxx
File Format Considerations xxx
The Program Management Binder xxxi

z/OS UNIX System Services (z/OS UNIX) xxxi
z/OS C/C++ Applications with z/OS UNIX C/C++ Functions. xxxiii
Input and Output . xxxiii

I/O Interfaces . xxxiii
File Types . xxxiv
Additional I/O Features . xxxv

The System Programming C Facility xxxv
Interaction with Other IBM Products xxxv
Additional Features of z/OS C/C++ xxxvii

Chapter 1. IBM Open Class Overview 1
Changes in Version 5 of the IBM Open Class Library for z/OS 4
Changes in Version 5 of the IBM Open Class Library 6
Changes in Version 4 of IBM Open Class Library 10

Changes in Version 4 of the IBM Collection Classes 14
Deprecated Functions in Version 4 of the IBM Open Class Library 16

IBM Open Class Applications. 18
Design an IBM Open Class Application 24

Create Cross-Platform Applications 26
Specify a Different Target Release on z/OS 27
Compile Open Class Applications 28

© Copyright IBM Corp. 1996, 2001 iii

||

||

Build a 64-Bit Enabled Application 32
Build the IBM Open Class Library Source Code for Debugging Purposes . . . 33
Work with the IBM Open Class Samples 37
Obsolete or Ignored Member Functions 41
IBM Open Class Libraries, Headers, and Conventions 43

Chapter 2. Application Control 47
Open Class Threading Model 47

Thread Safety and the IBM Open Class Library 48
Behavior of IBM Open Class Threads 49
Resources and Conditions. 50
Thread-Specific Data. 51
Thread Scheduling . 51
Multi-Processing Interface . 52
Start a Thread . 53

Reference Counting . 55
Use Reference Counted Objects 56
Use Counted Pointers . 57

Event Notification . 63
Notification Classes . 64
Notification Structure . 66
Notify Observers Synchronously 67
Notify Observers Asynchronously 71
Pass Data Along with Event Notification. 76

Application Resources . 77

Chapter 3. Object Persistent 79
IBM Open Class Streaming Classes 79

Object Streaming . 79
Data Streams . 81
Application Data Interfaces 84
Release-to-Release Data Compatibility (RRDC) 89
Exceptions Defined by the Streaming Classes 91

Chapter 4. USL I/O Streaming 93
The USL I/O Stream Class Hierarchy. 93
USL I/O Stream Header Files 95
The USL I/O Stream Classes and stdio.h 96
Use Predefined Streams . 96
Use Anonymous Streams . 97
Stream Buffers . 99
Format State Flags . 101

Format Stream Output. 101
Define Your Own Format State Flags 107

Manipulators . 109
Create Manipulators . 110
Define an APP Parameterized Manipulator 112
Define a MANIP Parameterized Manipulator 112
Define Nonassociative Parameterized Manipulators 113

Thread Safety and USL I/O Streaming 114
Basic USL I/O Stream Tasks 115

Receive Input from Standard Input 115
Display Output on Standard Output or Standard Error 118
Flush Output Streams with endl and flush 119
Parse Multiple Inputs . 121
Open a File for Input and Read from the File 122

iv IOC Library User’s Guide

Open a File for Output and Write to the File 125
Combine Input and Output of Different Types 126

Advanced USL I/O Stream Tasks 126
Associate a File with a Standard Input or Output Stream 126
Move through a file with filebuf Functions. 128
Define an Input Operator for a Class Type 130
Define an Output Operator for a Class Type. 132
Correct Input Stream Errors. 134
Manipulate Strings with the strstream Classes 137

Chapter 5. File Systems . 139
File System Entities. 140

Instantiate the File System Classes 141
Create and Delete Files and Directories 143
Get and Set Information about File System Entities 146

Path Names and Path Name Parsers 149
Work with Path Names . 152

Data Accessors . 153
Access File Contents . 154

File System Iterators . 156
Access Directory and Volume Contents 156

File System Movers and Copiers 158
Copy and Move Files and Directories 159

Thread Safety . 161
Customize File System Operations 161
File System Exceptions . 163

Chapter 6. Internationalization and Text 165
International Framework . 165

Locales in Internationalization 166
Collation Classes . 173
Transcoding Classes . 180
Date and Time Classes . 191
National . 203
Troubleshoot International Objects 205

Text Framework . 206
Text Creation and Manipulation 207
Text Boundaries . 207
Text Storage . 208
Strings and Buffers . 210
String Formats . 213
Comparison of IText and IString 214
Work with IText Objects . 214
Work with IString Objects 221
Styles . 236
Summary of Text Framework Classes 242

The Unicode Standard . 244
Create a Unicode Application 246
Unicode Support and the IUnicode Class 247
Character Values . 249
Character Properties . 252
Summary of Unicode Support Classes 254

Chapter 7. Error Handling, Tracing, and Testing 259
Exceptions in the IBM Open Class 259

General Exceptions . 260

Contents v

Use Trace Macros . 269
Application Testing Overview 272

Test Framework Components 273
The ITest Base Class . 274
The Decision Function. 278
Timing Tests . 280
Protocol Tests . 286
Auxiliary Test Classes . 287
Test Macros . 290

Chapter 8. Collection Classes Overview 293
Collection Characteristics . 294
Types of Collections . 296
Examples of Using the Collection Classes 298
Hierarchy and Design of the Collection Classes 301
Class Template Naming Conventions 305
Implementation Variants . 306

AVL Tree . 306
B* Tree . 308
Diluted Table . 309
Hash Table . 310
List . 311
Table . 312

Possible Implementation Paths 312
Choose One of the Provided Implementation Variants 314

Replace the Default Implementation. 315
Instantiate the Collection Classes 316

Implement Bounded Collections 317
Addition, Removal, and Replacement of Elements 318

Add an Element to a Collection 320
Remove an Element from a Collection 320
Add and Overload Member Functions 321
Example: Abstract Class Hierarchy 322

Copy and Reference Collections 323
Implement Element- and Key-Type Functionality 323

Define Equality Relation . 329
Define Key or Element Equality 330
Define an Operations Class. 331
Manage Memory with Element Operation Classes 334

Iteration . 334
Locate and Access Elements with Cursors 336
Iterate over a Collection with Cursors 337
Iterate over a Collection with allElementsDo and Applicators. 339

Smart Pointers . 340
Construct Smart Pointers. 341
Choose the Appropriate Smart Pointer Class 342
Use Automatic Pointers . 343
Use Element Pointers . 345
Use Managed Pointers . 349

Thread Safety and the Collection Classes 350
Insure Thread Safety with Guard Objects 351
Instantiate a Guard Object 351
Use Guard Objects . 352

Support for Notifications . 353
Use Collection Notification 354

Collection Class Library Exceptions 356

vi IOC Library User’s Guide

Enable Exception Checking 359
Handle Exceptions with Cursors 359

Troubleshoot Collection Class Problems 360
Compilation Errors Indicating a Problem with Constructors 361
Compilation Errors Indicating that an Element Type or Function is not

Declared . 361
Compilation Errors about Multiple Definitions 362
Compiler Warning of an Error in istdops.h 362
Link or Bind Errors about Multiple Definitions 363
Link or Bind Error Indicating istdops.h 363
Unexpected Exception Tracing Output 364
Unexpected Results when Adding an Element to a Unique Key Collection 364
Unexpected Results when Using Cursors. 365

Chapter 9. Math . 367
The IBinaryCodedDecimal Class 367

Represent Numerical Quantities Using IBinaryCodedDecimal 367
Perform Calculations Using IBinaryCodedDecimal 369
Convert Between IBinaryCodedDecimal and Other Numeric Types 370

The IDecimal Class . 372
Construct IDecimal Objects 372
Perform Operations on IDecimal Objects 373
Convert IDecimal Objects 374
Exceptions Thrown by IDecimal Objects 375
Intermediate Sizes of IDecimal Objects 376

Complex Mathematics Library Overview 377
Review of Complex Numbers 378
Header Files and Constants for the complex and c_exception Classes 379
Mathematical Operators for complex 380
Friend Functions for complex 382
Input and Output Operators for complex 385
Error Functions . 387
Example: Calculate Roots 390
Example: Use Equality and Inequality Operators 391

Notices . 393
Programming Interface Information 394
Trademarks. 394
Standards . 395

Glossary . 397

Bibliography . 425
Bibliography . 425

z/OS . 425
z/OS C/C++ . 425
z/OS Language Environment 425
Assembler . 425
COBOL . 425
PL/I . 425
VS FORTRAN. 426
CICS . 426
DB2 . 426
IMS/ESA. 426
QMF . 426
DFSMS . 426

Contents vii

viii IOC Library User’s Guide

About This Book

This book gives you guidance on how to use the IBM Open Class Library, the
comprehensive library of C++ classes that are provided with z/OS C/C++. The IBM
Open Class Library consists of the following groups of classes, which are described
in further detail in this book:

v application control

v object-persistent streaming

v file systems

v text and internationalization

v error handling, tracing and testing

v non-ISO I/O streaming

v collection

v mathematics.

Who Should Use This Book
To use this book, or any other books in the library of z/OS C/C++ publications, you
must have a working knowledge of the C/C++ programming language. In addition,
you must have knowledge of the z/OS operating system, and where appropriate,
the related products.

A Note about Examples
Examples that illustrate the use of the z/OS C/C++ compiler and the IBM Open
Class Library use a simple style. They are instructional examples, and do not
attempt to minimize run time, conserve storage, or check for errors. The examples
do not demonstrate all the uses of C++ language constructs or IBM Open Class
Library. Some examples are only code fragments and will not compile without
additional code.

© Copyright IBM Corp. 1996, 2001 ix

z/OS C/C++ and Related Publications
This section summarizes the content of the z/OS C/C++ publications and shows
where to find related information in other publications.

Table 1. z/OS C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

z/OS C/C++ Programming Guide,
SC09-4765

Guidance information for:
v C/C++ input and output
v Debugging z/OS C programs that use input/output
v Using linkage specifications in C++
v Combining C and assembler
v Creating and using DLLs
v Using threads in z/OS UNIX® applications
v Reentrancy
v Using the decimal data type in C and C++
v Handling exceptions, error conditions, and signals
v Optimizing code
v Optimizing your C/C++ code with Interprocedural Analysis
v Network communications under z/OS UNIX
v Interprocess communications using z/OS UNIX
v Structuring a program that uses C++ templates
v Using environment variables
v Using System Programming C facilities
v Library functions for the System Programming C facilities
v Using run-time user exits
v Using the z/OS C multitasking facility
v Using other IBM products with z/OS C/C++ (CICS, CSP, DWS, DB2®,

GDDM®, IMS™, ISPF, QMF)
v Internationalization: locales and character sets, code set conversion utilities,

mapping variant characters
v POSIX character set
v Code point mappings
v Locales supplied with z/OS C/C++
v Charmap files supplied with z/OS C/C++
v Examples of charmap and locale definition source files
v Converting code from coded character set IBM-1047
v Using built-in functions
v Programming considerations for z/OS UNIX C/C++

z/OS C/C++ User’s Guide, SC09-4767 Guidance information for:
v z/OS C/C++ examples
v Compiler options
v Binder options and control statements
v Specifying z/OS Language Environment® run-time options
v Compiling, IPA Linking, binding, and running z/OS C/C++ programs
v Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code

Set and Locale, ar and make, BPXBATCH)
v Diagnosing problems
v Cataloged procedures and REXX EXECs supplied by IBM

x IOC Library User’s Guide

Table 1. z/OS C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

C/C++ Language Reference,
SC09-4815

Reference information for:
v The C and C++ languages
v Lexical elements of z/OS C and z/OS C++
v Declarations, expressions, and operators
v Implicit type conversions
v Functions and statements
v Preprocessor directives
v C++ classes, class members, and friends
v C++ overloading, special member functions, and inheritance
v C++ templates and exception handling
v z/OS C and z/OS C++ compatibility

z/OS C/C++ Messages, GC09-4819 Provides error messages and return codes for the compiler, utilities, and IBM
Open Class® Library. For the C/C++ run-time library messages, refer to z/OS
Language Environment Run-Time Messages, SA22-7566.

z/OS C/C++ Run-Time Library
Reference, SA22-7821

Reference information for:
v header files
v library functions

z/OS C Curses, SA22-7820 Reference information for:
v Curses concepts
v Key data types
v General rules for characters, renditions, and window properties
v General rules of operations and operating modes
v Use of macros
v Restrictions on block-mode terminals
v Curses functional interface
v Contents of headers
v The terminfo database

z/OS C/C++ Compiler and Run-Time
Migration Guide, GC09-4913

Guidance and reference information for:
v Common migration questions
v Application executable program compatibility
v Source program compatibility
v Input and output operations compatibility
v Class library migration considerations
v Changes between releases of z/OS
v C/370™ to current compiler migration
v Other migration considerations

IBM Open Class Library User’s Guide,
SC09-4811

Guidance information for:
v Using the Complex Mathematics Class Library: Review of complex

numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

v Using the I/O Stream Class Library: Introduction, getting started, advanced
topics, and manipulators

v Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception handling,
problem solving, compatibility with previous releases, thread safety

v Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads
and protecting data, the IBM Open Class notification framework, Binary
Coded (Packed) Decimal classes, text and internationalization framework,
testing

About This Book xi

|
|
|

Table 1. z/OS C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

IBM Open Class Library Reference,
SC09-4812

Reference information for:
v Complex Mathematics Class Library
v I/O Stream Class Library
v Collection Class Library
v Application Support Class Library

Debug Tool User’s Guide and
Reference, SC09-2137

Guidance and reference information for:
v Preparing to debug programs
v Debugging programs
v Using Debug Tool in different environments
v Language-specific information
v Debug Tool reference

Standard C++ Library Reference,
available on the z/OS C/C++ library
page on the World Wide Web

The documentation, which is available at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html covers using the
following three main components of the Standard C++ Library to write portable
C/C++ code that complies with the ISO standards:

v ISO Standard C Library

v ISO Standard C++ Library

v Standard Template Library (C++)

The ISO Standard C++ library consists of 51 required headers. These 51 C++
library headers (along with the additional 18 Standard C headers) constitute a
hosted implementation of the C++ library. Of these 51 headers, 13 constitute
the Standard Template Library, or STL.

APAR and BOOKS files (Shipped with
Program materials)

Partitioned data set CBC.SCCNDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the z/OS C/C++ licensed program, including:
v Isolating reportable problems
v Keywords
v Preparing an Authorized Program Analysis Report (APAR)
v Problem identification worksheet
v Maintenance on z/OS
v Late changes to z/OS C/C++ publications

Note: For complete and detailed information on linking and running with z/OS Language Environment and using the
z/OS Language Environment run-time options, refer to z/OS Language Environment Programming Guide, SA22-7561.
For complete and detailed information on using interlanguage calls, refer to z/OS Language Environment Writing
Interlanguage Applications, SA22-7563.

The following table lists the z/OS C/C++ and related publications. The table groups
the publications according to the tasks they describe.

Table 2. Publications by Task

Tasks Books

Planning, preparing, and migrating to z/OS
C/C++

v z/OS C/C++ Compiler and Run-Time Migration Guide, GC09-4913
v z/OS Language Environment Customization, SA22-7564
v z/OS Language Environment Run-Time Migration Guide,

GA22-7565
v z/OS UNIX System Services Planning, GA22-7800
v z/OS Planning for Installation, GA22-7504

Installing v z/OS Program Directory
v z/OS Planning for Installation, GA22-7504
v z/OS Language Environment Customization, SA22-7564

xii IOC Library User’s Guide

|
|
|

|
|
|
|

|

|

|

|
|
|
|

|
|

Table 2. Publications by Task (continued)

Tasks Books

Coding programs v z/OS C/C++ Run-Time Library Reference, SA22-7821
v C/C++ Language Reference, SC09-4815
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS Language Environment Concepts Guide, SA22-7567
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Programming Reference, SA22-7562
v IBM Open Class Library User’s Guide, SC09-4811
v IBM Open Class Library Reference, SC09-4812

Coding and binding programs with
interlanguage calls

v z/OS C/C++ Programming Guide, SC09-4765
v C/C++ Language Reference, SC09-4815
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Writing Interlanguage Applications,

SA22-7563
v z/OS DFSMS Program Management, SC27-1130

Compiling, binding, and running programs v z/OS C/C++ User’s Guide, SC09-4767
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Debugging Guide, GA22-7560
v z/OS DFSMS Program Management, SC27-1130

Compiling and binding applications in the z/OS
UNIX environment

v z/OS C/C++ User’s Guide, SC09-4767
v z/OS UNIX System Services User’s Guide, SA22-7801
v z/OS UNIX System Services Command Reference, SA22-7802
v z/OS DFSMS Program Management, SC27-1130

Debugging programs v README file
v Debug Tool User’s Guide and Reference, SC09-2137
v z/OS C/C++ User’s Guide, SC09-4767
v z/OS C/C++ Messages, GC09-4819
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Debugging Guide, GA22-7560
v z/OS Language Environment Run-Time Messages, SA22-7566
v z/OS UNIX System Services Messages and Codes, SA22-7807
v z/OS UNIX System Services User’s Guide, SA22-7801
v z/OS UNIX System Services Command Reference, SA22-7802
v z/OS UNIX System Services Programming Tools, SA22-7805
v z/OS Messages Database, available on the z/OS Library page on

the World Wide Web
(http://www.ibm.com/servers/eserver/zseries/zos/bkserv)

Using shells and utilities in the z/OS UNIX
environment

v z/OS C/C++ User’s Guide, SC09-4767
v z/OS UNIX System Services Command Reference, SA22-7802
v z/OS UNIX System Services Messages and Codes, SA22-7807

Using sockets library functions in the z/OS
UNIX environment

v z/OS C/C++ Run-Time Library Reference, SA22-7821

Using the ISO Standard C++ Library to write
portable C/C++ code that complies with ISO
standards

v Standard C++ Library Reference, available on the z/OS C/C++
library page on the World Wide Web
(http://www.ibm.com/software/ad/c390/czos/czosdocs.html)

About This Book xiii

|

|
|
|

|
|
|

|
|
|

Table 2. Publications by Task (continued)

Tasks Books

Porting a UNIX Application to z/OS v z/OS UNIX System Services Porting Guide

This guide contains useful information about supported header files
and C functions, sockets in z/OS UNIX, process management,
compiler optimization tips, and suggestions for improving the
application’s performance after it has been ported. The Porting
Guide is available as a PDF file which you can download, or as
web pages which you can browse, at the following web address:
http://www-
1.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html

Working in the z/OS UNIX System Services
Parallel Environment

v z/OS UNIX System Services Parallel Environment: Operation and
Use, SA22-7810

v z/OS UNIX System Services Parallel Environment: MPI
Programming and Subroutine Reference, SA22-7812

Performing diagnosis and submitting an
Authorized Program Analysis Report (APAR)

v z/OS C/C++ User’s Guide, SC09-4767
v CBC.SCCNDOC(APAR) on z/OS C/C++ product tape

Tuning Large C/C++ Applications on z/OS
UNIX System Services

v IBM Redbook called Tuning Large C/C++ Applications on z/OS
UNIX System Services, which is available at:
http://www.redbooks.ibm.com/abstracts/sg245606.html

C/C++ Applications on OS/390 UNIX v IBM Redbook called C/C++ Applications on OS/390 UNIX, which is
available at:
http://www.redbooks.ibm.com/abstracts/sg245992.html

Performance considerations for XPLINK v IBM Redbook called XPLink: OS/390® Extra Performance Linkage,
which is available at:
http://www.redbooks.ibm.com/abstracts/sg245991.html

Note: For information on using the prelinker, see the appendix on prelinking and linking z/OS C/C++ programs in
z/OS C/C++ User’s Guide. As of OS/390 Version 2 Release 4, this appendix contains information that was previously
in the chapter on prelinking and linking z/OS C/C++ programs in z/OS C/C++ User’s Guide. It also contains prelinker
information that was previously in z/OS C/C++ Programming Guide.

Hardcopy Books
The following z/OS C/C++ books are available in hardcopy:
v z/OS C/C++ Run-Time Library Reference, SA22-7821
v z/OS C/C++ User’s Guide, SC09-4767
v z/OS C/C++ Messages, GC09-4819
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS C Curses, SA22-7820
v z/OS C/C++ Compiler and Run-Time Migration Guide, GC09-4913
v Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive z/OS
C/C++ Compiler and Run-Time Migration Guide, GC09-4913 at no charge. Feature
code 8009 includes the remaining books.

Softcopy Books
The z/OS C/C++ publications are supplied in PDF and BookMaster® formats on the
following CD: z/OS Collection, SK3T-4269. They are also available at the following
Web site:
http://www.ibm.com/software/ad/c390/czos/czosdocs.html

xiv IOC Library User’s Guide

|
|
|
|
|

||
|
|

To read a PDF file, use the Adobe Acrobat Reader. If you do not have the Adobe
Acrobat Reader, you can download it for free from the Adobe Web site:
http://www.adobe.com

To read a file in BookManager® format, use BookManager READ/MVS Version 1
Release 3 (5695-046) or the Library Reader™ for DOS, OS/2® or Windows®

supplied on the CD-ROMs containing BookManager books.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If you
know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The Library"
link on the z/OS home page. The web address for this page is:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

Softcopy Examples
Most of the larger examples in the following books are available in
machine-readable form:
v C/C++ Language Reference, SC09-4815
v z/OS C/C++ User’s Guide, SC09-4767
v z/OS C/C++ Programming Guide, SC09-4765
v IBM Open Class Library User’s Guide, SC09-4811

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCCNSAM or the directory /usr/lpp/ioclib/sample. The labels have the form
CCNxyyy or CLBxyyy, where x refers to a publication:
v R and X refer to C/C++ Language Reference, SC09-4815
v G refers to z/OS C/C++ Programming Guide, SC09-4765
v U refers to z/OS C/C++ User’s Guide, SC09-4767

Examples labelled as CCNxyyy appear in C/C++ Language Reference, z/OS C/C++
Programming Guide, and z/OS C/C++ User’s Guide. Examples labelled as CLBxyyy
appear in the z/OS C/C++ User’s Guide. Additional IBM Open Class Samples are
provided as softcopy only. They can be found in the /usr/lpp/ioclib/sample
directory.

z/OS C/C++ on the World Wide Web
Additional information on z/OS C/C++ is available on the World Wide Web on the
z/OS C/C++ home page at:
http://www.ibm.com/software/ad/c390/czos

This page contains late-breaking information about the z/OS C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the z/OS C/C++ information library and the libraries of other z/OS elements
that are available on the Web. The z/OS C/C++ home page also contains samples
that you can download, and links to other related Web sites.

About This Book xv

Where to find more information
Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS Language
Environment.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

xvi IOC Library User’s Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

About This Book xvii

xviii IOC Library User’s Guide

About IBM z/OS C/C++

The C/C++ feature of the IBM z/OS licensed program provides support for C and
C++ application development on the z/OS platform. The C/C++ feature is based on
the C/C++ for MVS/ESA™ product.

z/OS C/C++ includes:
v A C compiler (referred to as the z/OS C compiler)
v A C++ compiler (referred to as the z/OS C++ compiler)
v Support for a set of C++ class libraries that are available with the base z/OS

operating system
v Application Support Class and Collection Class Library source
v A mainframe interactive Debug Tool (optional)
v Performance Analyzer host component, which supports the IBM C/C++

Productivity Tools for OS/390 product
v A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX®, OS/400®,
VM/ESA®, and VSE/ESA™ operating systems. The AIX and OS/400 operating
systems also offer the C++ language.

Changes for z/OS V1R2
z/OS C/C++ has made the following performance and usability enhancements for
this release:

C++ Compiler Compliant with ISO C++ 1998 Standard
z/OS V1R2 C/C++ includes a C++ compiler which is fully compliant
with the ISO C++ 1998 Standard. This includes support for:

v namespaces and associated keywords namespace and using

v new type bool and associated keywords bool, true, and false

v new class member modifying keywords mutable and explicit

v new casts and associated keywords static_cast, dynamic_cast,
reinterpret_cast, and const_cast

v new template model and its associated keyword typename

v Run Time Type Identification (RTTI) and its associated keyword
typeid. The C++ compiler does not support exported template
definitions, nor does it allow overloading functions in ways that
differ only in the linkage type of function pointer parameters.

v The C++ Standard Library, including the Standard Template
Library (STL) and other library features of ISO C++ 1998

The associated run-time library DLLs use the XPLINK convention
and require an XPLINK-capable run-time environment.
Environments such as CICS will require the continued use of the
previous environment and be compiled with the NOXPLINK and
TARGET(OSV2R10) options.

Note: The OS/390 V2R10 C/C++ compiler is being shipped along
with the new z/OS V1R2 C/C++ compiler. Existing C++
programs may need source code changes in order to
conform to the ISO C++ 1998 Standard. If you do not require
the 1998 Standard, you can use the OS/390 V2R10 compiler

© Copyright IBM Corp. 1996, 2001 xix

|
|
|
|
|

to avoid these source changes, but you will not get the
benefits of the new features introduced in the new compiler.

IBM Open Class Library
The IBM Open Class (IOC) is a library of C++ classes. z/OS V1R2
includes a new level of IOC, which is consistent with that shipped in
VisualAge® C++ for AIX Version 5.0. This is intended to ease
porting from AIX, but is not intended for use in new development.
Support will be withdrawn in a future release. New application
development involving C++ classes should make use of the C++
Standard Library instead of the IBM Open Class Library.

Large File Support in Standard I/O Stream Class Library
Large file support enables access to hierarchical file system (HFS)
files that are over 2 GB in size, using the C++ Standard Library.

IPA Support for XPLINK
This feature combines the highest optimization level (IPA) for z/OS
C/C++ with its high performance linkage (XPLINK).

v XPLINK is a function call linkage introduced in OS/390 V2R10
which offers significant performance increments when used in an
environment of frequent calls between small functions. XPLINK
makes subroutine calls more efficient by removing non-essential
instructions from the main path. When all functions are compiled
with the XPLINK option, function pointers can be used without
restriction.

v InterProcedural Analysis (IPA) was introduced in OS/390 V1R2
C. IPA performs optimizations across compilation units, which
exposes more optimization opportunities. This complements the
traditional approach of optimizing within compilation units.

Enhanced ASCII Support
z/OS V1R2 C/C++ provides enhanced ASCII support that simplifies
porting of applications from ASCII platforms. It provides the ability
to:

v Build ASCII-based applications by producing object code with
ASCII string literals and character constants, and a flag that
identifies applications as ASCII or EBCDIC

v Use Unicode-based wide characters (wchar_t) in ASCII-based
applications

v Transparently call native ASCII run-time library functions from
ASCII-based applications

v Process user-defined ASCII multi-byte code pages with
user-supplied code set related methods

v Create ASCII-based locale objects, which allow processing of
ASCII data natively at run time

The ability to produce code that contains ASCII string literals and
character constants allows ASCII-dependent logic to continue
working as on ASCII platforms thus eliminating the need to find all
such places in the code and convert them to EBCDIC.

New Compiler Options
z/OS V1R2 C/C++ introduces the following new compiler options:

v ASCII

v BITFIELD

xx IOC Library User’s Guide

|
|
|
|
|
|
|

|
|

|

|

v CHARS

v ENUM

v HALTONMSG (C++ only)

v KEYWORD (C++ only)

v LANGLVL (added new suboptions)

v OBJECTMODEL (C++ only)

v RTTI (C++ only)

v STATICINLINE (C++ only)

v SUPPRESS (C++ only)

v TEMPLATERECOMPILE (C++ only)

v TEMPLATEREGISTRY (C++ only)

v TMPLPARSE (C++ only)

Compiler Option Whose Syntax Has Been Changed for C++ to Match C

v INLINE: The default inline behavior has changed. In previous
versions of C++, the threshold and limit values were 100 and
2000, respectively. These are now 100 and 1000.

Compiler Options That Are No Longer Supported
In z/OS V1R2 C/C++ the following compiler options are no longer
supported:

v DECK: The replacement for DECK functionality that routes output
to DD: SYSPUNCH is to use OBJECT(DD:SYSPUNCH).
Alternatively, you can replace all references to DD:SYSPUNCH in
your JCL with DD:SYSLIN, and use the OBJECT option.

v GENPCH

v HWOPTS: use ARCHITECTURE instead

v LANGLVL(COMPAT)

v OMVS: use OE instead

v SRCMSG

v SYSLIB: use SEARCH instead

v SYSPATH: use SEARCH instead

v TARGET(OSV1R2 | OSV1R3 | OSV2R4 | OSV2R5)

v USEPCH

v USERLIB: use LSEARCH instead

v USERPATH: use LSEARCH instead

Compiler Option Whose Default Value Has Changed
In z/OS V1R2 the default setting for the following compiler options
has changed:

v Default is now DIGRAPH, both for C and C++

v Default is now INFO(LAN) for C++

v Default is now ROSTRING, both for C and C++

Built-in Functions for Floating-Point and Other Hardware Instructions
z/OS V1R2 has new built-in functions for floating-point and other
hardware instructions, making these accessible to C/C++ programs.
For information on using these built-in functions, see the appendix
on built-in functions in z/OS C/C++ Programming Guide.

About IBM z/OS C/C++ xxi

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|
|
|
|
|

Limitations of Enhanced ASCII
This section explains under what conditions you can use Enhanced ASCII.

v A subset of C headers and functions is provided in ASCII. For more information,
see z/OS C/C++ Run-Time Library Reference.

v The only way to get to the ASCII version of functions and the external variables
environ and tzname is to use the appropriate IBM header files.

v ASCII applications may read, but not update, environment variables using the
external variable. Updates to the environment variables using environ in an
ASCII application cause unpredictable results and may result in an abend.
Language Environment maintains two equivalent arrays of environment variables
when running an ASCII application, one with EBCDIC encodings and the other
with ASCII encodings. All ASCII compile units that use the environ external
variable must include <stdlib.h> so that environ can be mapped to access the
ASCII encoded environment strings. If <stdlib.h> is not included, environ will
refer to the EBCDIC representation of the environment variable strings.

Enhanced ASCII provides limited conversion of ASCII to EBCDIC, and EBCDIC to
ASCII. The character set or alphabet that is associated with any locale consists of
the following:

v A common, XPG4-defined subset of characters such as POSIX portable
characters

v A unique, locale-specific subset of characters such as NLS characters

The conversion only applies to the portable subset of characters that are associated
with a locale. Only the EBCDIC IBM-1047 encoding of portable characters is
supported.

You might encounter unexpected results in the following situations:

v If Enhanced ASCII applications are run in locales that contain non-Latin Alphabet
Number 1 NLS characters, C-RTL functions might copy some of the locale’s
non-Latin 1 NLS characters into buffers that the application is writing to stdout or
another HFS files. The non-Latin Alphabet Number 1 NLS characters would then
cause problems during automatic conversion.

v Language Environment applications must select non-English message files. If
your NATLANG run-time option is not UEN or ENU, messages directed to the
Language Environment message file are converted to ASCII. These messages
would cause problems during automatic conversion to EBCDIC.

z/OS Language Environment Downward Compatibility
z/OS Language Environment provides downward compatibility support. Assuming
that you have met the required programming guidelines and restrictions, described
in the z/OS Language Environment Programming Guide, this support enables you
to develop applications on higher release levels of z/OS for use on platforms that
are running lower release levels of z/OS or OS/390. In C and C++, downward
compatibility support is provided through the C/C++ TARGET compiler option. See
z/OS C/C++ User’s Guide for details on this compiler option.

For example, a company may use z/OS V1R2 with Language Environment on a
development system where applications are coded, link-edited, and tested, while
using any supported lower release of OS/390 or z/OS Language Environment on
their production systems where the finished application modules are used.

Downward compatibility support is not the roll-back of new function to prior releases
of the operating system. Applications developed that exploit the downward

xxii IOC Library User’s Guide

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|
|
|

|

compatibility support must not use any Language Environment function that is
unavailable on the lower release of OS/390 or z/OS where the application will be
used.

The downward compatibility support includes toleration PTFs for lower releases of
OS/390 or z/OS to assist in diagnosing applications that do not meet the
programming requirements for this support. (Specific PTF numbers can be found in
the PSP buckets.)

The downward compatibility support provided by z/OS Language Environment and
by the toleration PTFs does not change Language Environment’s upward
compatibility. That is, applications coded and link-edited with one release of OS/390
or z/OS Language Environment will continue to run on later releases of OS/390 or
z/OS Language Environment without the need to recompile or re-link edit the
application, independent of the downward compatibility support.

Downward compatibility is supported in earlier releases of OS/390 C/C++ (from
Version 2 Release 6), but in OS/390 V2R6, the user is required to copy header files
and link-edit SYSLIB data sets from the deployment release of OS/390. Starting with
OS/390 Version 2 Release 10, the current level header files and SYSLIB can be
used (the user no longer has to copy header files and SYSLIB data sets from the
deployment release).

The C/C++ Compilers
The following sections describe the C and C++ languages and the z/OS C/C++
compilers.

The C Language
The C language is a general purpose, versatile, and functional programming
language that allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language
The C++ language is based on the C language and includes all of the advantages
of C listed above. In addition, C++ also supports object-oriented concepts, type
genericity or templates, and an extensive library. For a detailed description of the
differences between z/OS C++ and z/OS C, refer to the C/C++ Language
Reference.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

About IBM z/OS C/C++ xxiii

Common Features of the z/OS C and C++ Compilers
The C and C++ compilers, when used with z/OS Language Environment, offer
many features to help your work:

v Optimization support:

– Algorithms to take advantage of the S/390® architecture to get better
optimization for speed and use of computer resources through the OPTIMIZE
and IPA compiler options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the
machine instructions it generates to produce faster-running object code, which
improves application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

v DLLs (dynamic link libraries) to share parts among applications or parts of
applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use
a definition located in another executable at run time. You can use both
load-on-reference and load-on-demand DLLs. When your program refers to a
function or variable which resides in a DLL, z/OS C/C++ generates code to load
the DLL and access the functions and variables within it. This is called
load-on-reference. Alternatively, your program can use z/OS C library functions to
load a DLL and look up the address of functions and variables within it. This is
called load-on-demand. Your application code explicitly controls load-on-demand
DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve system
memory usage. DLLs also offer more flexibility for building, packaging, and
redistributing applications.

v Full program reentrancy

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. z/OS C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with z/OS or the z/OS Language
Environment prelinker and program management binder. The z/OS C++ compiler
always ensures that C++ programs are reentrant.

v INLINE compiler option

Additional optimization capabilities are available with the INLINE compiler option.

v Locale-based internationalization support derived from IEEE POSIX 1003.2-1992
standard. Also derived from X/Open CAE Specification, System Interface
Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to use
locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,
PL/1, compiled Java™, and Fortran, to enable programmers to integrate z/OS
C/C++ code with existing applications.

v Exploitation of z/OS and z/OS UNIX technology.

z/OS UNIX is an IBM implementation of the open operating system environment,
as defined in the XPG4 and POSIX standards.

v Support for the following standards at the system level:

xxiv IOC Library User’s Guide

– A subset of the extended multibyte and wide character functions as defined by
Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), as applicable to the S/390 environment.

– X/Open CAE Specification, Network Services, Issue 4

v Year 2000 support

v Support for the Euro currency

z/OS C Compiler Specific Features
In addition to the features common to z/OS C and C++, the z/OS C compiler
provides you with the following capabilities:

v The ability to write portable code that supports the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Language Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use z/OS C in place of
assembler

v Extensions of the standard definitions of the C language to provide programmers
with support for the z/OS environment, such as fixed-point (packed) decimal data
support

z/OS C++ Compiler Specific Features
In addition to the features common to z/OS C and C++, the z/OS C++ compiler
supports the International Standard for the C++ Programming Language (ISO/IEC
14882:1998) specification.

Class Libraries
z/OS V1R2 C/C++ provides the following class libraries, which are all thread-safe:

v C++ Standard Library, including the Standard Template Library (STL) and other
library features of ISO C++ 1998

v IBM Open Class Library for z/OS V1R2

v IBM Open Class Library for OS/390 V2R10

Refer to z/OS C/C++ Compiler and Run-Time Migration Guide and IBM Open Class
Library User’s Guide for more details on the components of these libraries.

For new code and the most portable code you will want to use the new C++
Standard Library, which includes the following:

v The C++ Standard I/O Stream Library for performing input and output (I/O)
operations

About IBM z/OS C/C++ xxv

v The C++ Standard Complex Mathematics Library for manipulating complex
numbers

v The Standard Template Library (STL) which is composed of C++ template-based
algorithms, container classes, iterators, localization objects, and the string class

The IBM Open Class (IOC) is a comprehensive library of C++ classes that you can
use to develop applications. z/OS V1R2 includes a new level of IOC which is
consistent with that shipped in VisualAge C++ for AIX V5.0. This is intended to ease
porting from AIX, but is not intended for use in new development. Support will be
withdrawn in a future release.

The z/OS V1R2 IBM Open Class Library includes:

v The Application Support Class Library which provides the basic abstractions that
are needed during the creation of most C++ applications, including String, Date,
Time, and Decimal. The Application Support Class Library corresponds to the
IOC member in the data sets.

v The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. The Collection Class
Library provides developers with a consistent set of building blocks from which
they can derive application objects. The library design exploits features of the
C++ language such as exception handling and template support. The Collection
Class Library corresponds to the COLL member in the data sets.

The z/OS V1R2 IBM Open Class enables you to choose between the C++ Standard
I/O Stream and Complex Mathematics libraries, and the UNIX Systems Laboratories
C++ Language System Release (USL) I/O Stream and Complex Mathematics
libraries.

The OS/390 V2R10 IBM Open Class Library and USL class libraries include the
following:

v The USL I/O Stream Class Library (corresponds to the IOSTREAM member in
the data sets)

v The USL Complex Mathematics Class Library (corresponds to the COMPLEX
member in the data sets)

v The Application Support Class Library (corresponds to the APPSUPP member in
the data sets)

v The Collection Class Library (corresponds to the COLLECT member in the data
sets)

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the z/OS C/C++ compiler
features or to use the DLL Rename Utility.

IBM Open Class Library Source
The IBM Open Class Library Source consists of the following:

v Application Support Class Library source code

v Collection Class Library source code

Utilities
The z/OS C/C++ compilers provide the following utilities:

v The CXXFILT utility to map z/OS C++ mangled names to the original source.

xxvi IOC Library User’s Guide

v The DSECT Conversion Utility to convert descriptive assembler DSECTs into
z/OS C/C++ data structures.

v The localedef utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use.

v The makedepend utility to derive all dependencies in the source code and write
these into the makefile for the make command to determine which source files to
recompile, whenever a dependency has changed. This frees the user from
manually monitoring such changes in the source code.

z/OS Language Environment provides the following utilities:

v The Object Library Utility (C370LIB) to update partitioned data set (PDS and
PDSE) libraries of object modules and Interprocedural Analysis (IPA) object
modules.

v The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged. The DLL Rename Utility does not
support XPLINK.

v The prelinker which combines object modules that comprise a z/OS C/C++
application, to produce a single object module. The prelinker supports only object
and extended object format input files, and does not support GOFF.

The Debug Tool
z/OS C/C++ supports program development by using the Debug Tool. This
optionally available tool allows you to debug applications in their native host
environment, such as CICS/ESA®, IMS/ESA®, DB2, and so on. The Debug Tool
provides the following support and function:
v Step mode
v Breakpoints
v Monitor
v Frequency analysis
v Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation, or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

Note: You can also use the dbx shell command to debug programs, as described in
z/OS UNIX System Services Command Reference.

For further information, see “IBM C/C++ Productivity Tools for OS/390”.

IBM C/C++ Productivity Tools for OS/390
With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your
z/OS application development environment out to the workstation, while remaining
close to your familiar host environment. IBM C/C++ Productivity Tools for OS/390
includes the following workstation-based tools to increase your productivity and
code quality:

v A Performance Analyzer to help you analyze, understand, and tune your C and
C++ applications for improved performance

About IBM z/OS C/C++ xxvii

v A Distributed Debugger that allows you to debug C or C++ programs from the
convenience of the workstation

v A workstation-based editor to improve the productivity of your C and C++ source
entry

v Advanced online help, with full text search and hypertext topics as well as
printable, viewable, and searchable Portable Document Format (PDF) documents

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host
components:

v Debug Tool

v Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and
analyze a profile of the execution of your host z/OS C or C++ application. Use this
information to time and tune your code so that you can increase the performance of
your application.

Use the Distributed Debugger to debug your z/OS C or C++ application remotely
from your workstation. Set a break point with the simple click of the mouse. Use the
windowing capabilities of your workstation to view multiple segments of your source
and your storage, while monitoring a variable at the same time.

Use the workstation-based editor to quickly develop C and C++ application code
that runs on z/OS. Context-sensitive help information is available to you when you
need it.

References to Performance Analyzer in this document refer to the IBM OS/390
Performance Analyzer included in the C/C++ Productivity Tools for OS/390 product.

z/OS Language Environment
z/OS C/C++ exploits the C/C++ run-time environment and library of run-time
services available with z/OS Language Environment (formerly OS/390 Language
Environment, Language Environment for MVS™ & VM, Language Environment/370
and LE/370).

z/OS Language Environment consists of four language-specific run-time libraries,
and Base Routines and Common Services, as shown below. z/OS Language
Environment establishes a common run-time environment and common run-time
services for language products, user programs, and other products.

xxviii IOC Library User’s Guide

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The z/OS Language Environment provides a variety of services:

v Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. z/OS C/C++ contains
these functions within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

v Run-time options that help in the execution, performance, and diagnosis of your
application.

v Access to operating system services; z/OS UNIX services are available to an
application programmer or program through the z/OS C/C++ language bindings.

v Access to language-specific library routines, such as the z/OS C/C++ library
functions.

About Prelinking, Linking, and Binding
When describing the process to build an application, this document refers to the
bind step.

Normally the Program Management Binder is used to perform the bind step.
However, in many cases the prelink and link steps can be used in place of the bind
step. When they cannot be substituted, and the Program Management binder alone
must be used, it will be stated. For more information on the bind, prelink, and link
steps, refer to z/OS C/C++ User’s Guide.

The terms bind and link have multiple meanings.

v With respect to building an application:

In both instances, the program management binder is performing the actual
processing of converting the object file(s) into the application executable module.

Object files with longname symbols, reentrant writable static symbols, and
DLL-style function calls require additional processing to build global data for the
application.

The term link refers to the case where the binder does not perform this additional
processing, due to one of the following:

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in z/OS Language Environment

About IBM z/OS C/C++ xxix

– The processing is not required, because none of the object files in the
application use constructed reentrancy, use long names, are DLL or are C++.

– The processing is handled by executing the prelinker step before running the
binder.

The term bind refers to the case where the binder is required to perform this
processing.

v With respect to executing code in an application:

The linkage definition refers to the program call linkage between program
functions and methods. This includes the passing of control and parameters.
Refer to C/C++ Language Reference for more information on linkage
specification.

Some platforms have a single linkage convention. S/390 has a number of linkage
conventions, including standard operating system linkage, Extra Performance
Linkage (XPLINK), and different non-XPLINK linkage conventions for C and C++.

Notes on the Prelinking Process
Note that you cannot use the prelinker if you are using the XPLINK or GOFF compiler
options. Also, IBM recommends using the binder without the prelinker whenever
possible.

Prior to OS/390 V2R4 C/C++, the z/OS C/C++ User’s Guide showed how to use the
prelinker and linkage editor. Sections throughout the book discussed concepts of
prelinking and linking. The prelinker was designed to process long names and
support constructed reentrancy in earlier versions of the C complier on the MVS
and OS/390 operating systems. The prelinker, shipped with the z/OS C/C++
run-time library, provides output that is compatible with the linkage editor, that is
shipped with the binder.

The binder is designed to include the function of the prelinker, the linkage editor, the
loader, and a number of APIs to manipulate the program object. Thus, the binder is
a superset of the linkage editor. Its functionality provides a high level of compatibility
with the prelinker and linkage editor, but provides additional functionality in some
areas. Generally, the terms binding and linking are interchangeable. For more
information on the compatibility between the binder, and the linker and prelinker,
see z/OS DFSMS Program Management.

Updates to the prelinking, linkage-editing, and loading functions that are performed
by the binder are delivered through the binder. If you use the prelinker shipped with
the z/OS C/C++ run-time library and the linkage editor (supplied through the binder)
you have to apply the latest maintenance for the run-time library as well as the
binder.

If you still need to use the prelinker and linkage editor, see z/OS C/C++ User’s
Guide.

File Format Considerations
You can use the binder in place of the prelinker and linkage editor but there are
exceptions, which are file format considerations. For further information, on when
you cannot use the binder, see the chapter about binding z/OS C/C++ programs in
the z/OS C/C++ User’s Guide.

xxx IOC Library User’s Guide

|
|

|

|
|
|
|

The Program Management Binder
The binder provided with z/OS combines the object modules, load modules, and
program objects comprising an application. It produces a single z/OS output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA compiler
options, you must use the prelinker. C and C++ code compiled with the GOFF or
XPLINK compiler options cannot be processed by the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the
IPA compile-time option)

v Input of object modules, load modules, and program objects

v Improved long name support:
– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, enabling full cross-referencing
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

Using the binder without using the prelinker has the following disadvantage:

v Long name maximum symbol length:
– Long names currently processed by the binder are limited to 1024 characters.

The prelinker supports up to (32 K - 1) characters. IBM intends to bring the
binder limit in line with the prelinker in a future release.

The prelinker provided with z/OS Language Environment combines the object
modules comprising a z/OS C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in a
PDS), or bind it into a load module or a program object (which is stored in a PDS,
PDSE, or HFS file).

Note: For further information on the binder, refer to the DFSMS home page at
http://www.ibm.com/storage/software/sms/smshome.htm.

z/OS UNIX System Services (z/OS UNIX)
z/OS UNIX provides capabilities under z/OS to make it easier to implement or port
applications in an open, distributed environment. z/OS UNIX Services are available
to z/OS C/C++ application programs through the C/C++ language bindings available
with z/OS Language Environment.

Together, the z/OS UNIX System Services, z/OS Language Environment, and z/OS
C/C++ compilers provide an application programming interface that supports
industry standards.

z/OS UNIX provides support for both existing z/OS applications and new z/OS
UNIX applications through the following:

v C programming language support as defined by ISO C

v C++ programming language support as defined by ISO C++

About IBM z/OS C/C++ xxxi

|

|
|
|
|

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:
System Interfaces and Headers, Issue 4, Version 2, which provides standard
interfaces for better source code portability with other conforming systems; and
X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open
UNIX descriptions of sockets and X/Open Transport Interface (XTI)

v z/OS UNIX Extensions that provide z/OS-specific support beyond the defined
standards

v The z/OS UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– A shell, tcsh, based on the C shell, csh

– Tools and utilities that support the X/Open Single UNIX Specification, also
known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
z/OS support. The following is a partial list of utilities that are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or z/OS C/C++ executable files in HFS files from a
shell session

c89 Compiles, assembles, and binds z/OS UNIX C/C++ and
assembler applications

dbx Provides an environment to debug and run programs

gencat Merges the message text source files message file (usually
*.msg) into a formatted message catalog file (usually *.cat)

iconv Converts characters from one code set to another

lex Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

localedef Creates a compiled locale object

make Helps you manage projects containing a set of interdependent
files, such as a program with many z/OS source and object
files, keeping all such files up to date with one another

yacc Allows you to write compilers and other programs that parse
input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, assembles, and binds z/OS UNIX C++ applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

v The z/OS UNIX Debugger feature, which provides the dbx interactive symbolic
debugger for z/OS UNIX applications

v Access to a hierarchical file system (HFS), with support for the POSIX.1 and
XPG4 standards

v z/OS C/C++ I/O routines, which support using HFS files, standard z/OS data
sets, or a mixture of both

xxxii IOC Library User’s Guide

v Application threads (with support for a subset of POSIX.4a)

v Support for z/OS C/C++ DLLs

z/OS UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

For application developers who have worked with other UNIX environments, the
z/OS UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you
may find that the z/OS UNIX environment can enhance your productivity. Refer to
z/OS UNIX System Services User’s Guide for more information on the Shell and
Utilities.

z/OS C/C++ Applications with z/OS UNIX C/C++ Functions
All z/OS UNIX C functions are available at all times. In some situations, you must
specify the POSIX(ON) run-time option. This is required for the POSIX.4a threading
functions, and the system() and signal handling functions where the behavior is
different between POSIX/XPG4 and ISO. Refer to z/OS C/C++ Run-Time Library
Reference for more information about requirements for each function.

You can invoke a z/OS C/C++ program that uses z/OS UNIX C functions using the
following methods:

v Directly from a shell.

v From another program, or from a shell, using one of the exec family of functions,
or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) run-time
option.

Input and Output
The C/C++ run-time library that supports the z/OS C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The C++
I/O Stream Class Library provides additional support.

I/O Interfaces
The C/C++ run-time library supports the following I/O interfaces:

C Stream I/O
This is the default and the ISO-defined I/O method. This method processes
all input and output on a per-character basis.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is a z/OS C/C++ extension to the ISO standard.

TCP/IP Sockets I/O
z/OS UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known as
sockets. A set of C language functions provides support for z/OS UNIX
sockets. z/OS UNIX sockets correspond closely to the sockets used by
UNIX applications that use the Berkeley Software Distribution (BSD) 4.3

About IBM z/OS C/C++ xxxiii

standard (also known as OE sockets). The slightly different interface of the
X/Open CAE Specification, Networking Services, Issue 4, is supplied as an
additional choice. This interface is known as X/Open Sockets.

The z/OS UNIX socket application program interface (API) provides support
for both UNIX domain sockets and Internet domain sockets. UNIX domain
sockets, or local sockets, allow interprocess communication within z/OS,
independent of TCP/IP. Local sockets behave like traditional UNIX sockets
and allow processes to communicate with one another on a single system.
With Internet sockets, application programs can communicate with each
other in the network using TCP/IP.

In addition, the C++ I/O Stream libraries support formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output for
your own data types. This helps improve the maintainability of programs that use
input and output.

File Types
In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ run-time library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
z/OS C/C++ has native support for three types of VSAM data organization:

v Key-sequenced data sets (KSDS). Use KSDS to access a record through
a key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

v Entry-sequenced data sets (ESDS). Use ESDS to access data in the
order it was created (or in reverse order).

v Relative-record data sets (RRDS). Use RRDS for data in which each
item has a particular number (for example, a telephone system where a
record is associated with each telephone number).

For more information on how to perform I/O operations on these VSAM file
types, see z/OS C/C++ Programming Guide.

Hierarchical File System Files
z/OS C/C++ recognizes Hierarchical File System (HFS) file names. The
name specified on the fopen() or freopen() call has to conform to certain
rules (described in z/OS C/C++ Programming Guide). You can create
regular HFS files, special character HFS files, or FIFO HFS files. You can
also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than to
devices. Since memory files reside in main storage and only exist while the
program is executing, you primarily use them as work files. You can access
memory files across load modules through calls to non-POSIX system()
and C fetch(); they exist for the life of the root program. Standard streams
can be redirected to memory files on a non-POSIX system() call using
command line redirection.

Hiperspace™ Expanded Storage
Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to 2 GB of contiguous
virtual storage space. A program can use this storage as a buffer
(1 gigabyte(GB) = 230 bytes).

xxxiv IOC Library User’s Guide

Additional I/O Features
z/OS C/C++ provides additional I/O support through the following features:

v Large file support, which enables I/O to and from hierarchical file system (HFS)
files that are larger than 2 GB

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the
DFSMS/MVS® support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

v Full support of PDSEs on z/OS (including support for multiple members opened
for write)

v Overlapped I/O support under z/OS (NCP, BUFNO)

v Multibyte character I/O functions

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD
or tape

v Support for Generation Data Group I/O

The System Programming C Facility
The System Programming C (SPC) facility allows you to build applications that
require no dynamic loading of z/OS Language Environment libraries. It also allows
you to tailor your application for better utilization of the the low-level services
available on your operating system. SPC offers a number of advantages:

v You can develop applications that can be executed in a customized environment
rather than with z/OS Language Environment services. Note that if you do not
use z/OS Language Environment services, only some built-in functions and a
limited set of C/C++ run-time library functions are available to you.

v You can substitute the z/OS C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SPC.

v SPC lets you develop applications featuring a user-controlled environment, in
which a z/OS C environment is created once and used repeatedly for C function
execution from other languages.

v You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independent of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products
When you use z/OS C/C++, you can write programs that utilize the power of other
IBM products and subsystems:

v Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the z/OS C++ compiler.
However, your z/OS C++ program can use interlanguage calls (ILC) to call
z/OS C programs that access CSP.

About IBM z/OS C/C++ xxxv

|
|

v Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++ application
programs. The CICS® Command-Level Interface provides data, job, and task
management facilities that are normally provided by the operating system.

Note: Code preprocessed with CICS/ESA versions prior to V4R1 is not
supported for z/OS C++ applications. z/OS C++ code preprocessed on
CICS/ESA V4R1 cannot run under CICS/ESA V3R3.

v DB2 Universal Database™ (UDB) for z/OS

DB2 programs manage data that is stored in relational databases. You can
access the data by using a structured set of queries that are written in Structured
Query Language (SQL).

A DB2 program uses SQL statements that are embedded in the application
program. The SQL translator (DB2 preprocessor) translates the embedded SQL
into host language statements, which are then compiled by the z/OS C/C++
compilers. The DB2 program processes requests, then returns control to the
application program.

v Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your C or C++ program to manipulate temporary data objects that are known as
TEMPSPACE and VSAM linear data sets.

v Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture (IMS/ESA)
product provides support for hierarchical databases.

v Interactive System Productivity Facility (ISPF)

z/OS C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a user
and a computer. The dialog interface contains display, variable, message, and
dialog services as well as other facilities that are used to write interactive
applications.

v Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts (including support for the double-byte character set)

– Business image support

– Saving and restoring graphic pictures

– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)

z/OS C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable interface.
You can create applications to perform a variety of tasks, such as data entry,
query building, administration aids, and report analysis.

v z/OS Java Support

The Java language supports the Java Native Interface (JNI) for making calls to
and from C/C++. These calls do not use ILC support but rather the Java defined
interface JNI. Java code, which has been compiled using the High Performance

xxxvi IOC Library User’s Guide

Compiler for Java (HPCJ), will support the JNI interface. Calls to C or C++ do not
distinguish between compiled Java and interpreted Java.

Additional Features of z/OS C/C++

Feature Description

long long Data Type The z/OS C/C++ compiler supports long long as a native data type when the compiler
option LANGLVL(LONGLONG) is turned on. This option is turned on by default by the
compiler option LANGLVL(EXTENDED).

Multibyte Character Support z/OS C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by z/OS C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

z/OS C/C++ provides three S/390 floating-point number data types: single precision (32
bits), declared as float; double precision (64 bits), declared as double; and extended
precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, z/OS C/C++ also supports IEEE 754 floating-point representation. By
default, float, double, and long double values are represented in IBM S/390 floating
point format. However, the IEEE 754 floating-point representation is used if you specify
the FLOAT(IEEE754) compile option. For details on this support, see the description of
the FLOAT option in z/OS C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support z/OS C/C++ provides message text in either American English or Japanese. You can
dynamically switch between these two languages.

Locale Definition Support z/OS C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
Page) Support

The z/OS C/C++ compiler can compile C/C++ source written in different EBCDIC code
pages. In addition, the iconv utility converts data or source from one code page to
another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multi-threading Threads are efficient in applications that allow them to take advantage of any
underlying parallelism available in the host environment. This underlying parallelism in
the host can be exploited either by forking a process and creating a new address
space, or by using multiple threads within a single process. For more information, refer
to the z/OS C/C++ Programming Guide

About IBM z/OS C/C++ xxxvii

Feature Description

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks at
the same time. z/OS C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of z/OS to allow a single z/OS C application program to use
more than one processor of a multiprocessing system simultaneously.
Note: XPLINK is not supported in an MTF environment. You can also use threads to
perform multitasking with or without XPLINK, as described in the z/OS C/C++
Programming Guide.

Packed Structures and
Unions

z/OS C provides support for packed structures and unions. Structures and unions may
be packed to reduce the storage requirements of an z/OS C program or to define
structures that are laid out according to COBOL or PL/I structure layout rules.

Fixed-point (Packed)
Decimal Data

z/OS C supports fixed-point (packed) decimal as a native data type for use in business
applications. The packed data type is similar to the COBOL data type COMP-3 or the PL/I
data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under
z/OS, z/OS UNIX, and TSO. You can also use the system() function to call EXECs on
z/OS and TSO, or Shell scripts using z/OS UNIX.

Exploitation of ESA Support for z/OS, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows you
to exploit the features of the ESA.

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(2) instructs the compiler to generate
faster instruction sequences that are available only on newer machines. ARCH(3) also
generates these faster instruction sequences and enables support for IEEE 754 Binary
Floating-Point instructions. Code compiled with ARCH(2) runs on G2, G3, G4, and 2003
processors and code compiled with ARCH(3) runs on a G5 or G6 processor, and
follow-on models.

Use the TUNE compiler option to optimize your application for a specific machine
architecture. TUNE impacts performance only; it does not impact the processor model on
which you will be able to run your application. TUNE(3) optimizes your application for the
newer G4, G5, and G6 processors. TUNE(2) optimizes your application for other
architectures. For more information, refer to the ARCHITECTURE and TUNE compiler
information in z/OS C/C++ User’s Guide.

Built-in Functions for
Floating-Point and Other
Hardware Instructions

Use built-in functions for floating-point and other hardware instructions that are
otherwise inaccessible to C/C++ programs. See the appendix on built-in functions in
z/OS C/C++ Programming Guide.

xxxviii IOC Library User’s Guide

|
|
|

|
|
|

Chapter 1. IBM Open Class Overview

The IBM Open Class (IOC) is a comprehensive library of C++ classes provided with
z/OS C/C++ feature that you can use to develop applications.

Because this library consists of C++ classes, you can create customized classes
through the C++ language’s mechanism of inheritance.

The IBM Open Class supports the following platforms:

v AIX

v Windows

v OS/2

v OS/400

v z/OS

Consequently, you can port your IBM Open Class applications between platforms
with minimal effort.

Any Windows or OS/2 information refer to versions 3.6.5 and 4 of
VisualAge C++. This information is provided to help you to develop portable
applications.

This documentation assumes that you are proficient with both the C++ programming
language, and with object-oriented programming concepts and techniques. Refer to
the C/C++ Language Reference for detailed information about this language.

The Organization of the IBM Open Class
The IBM Open Class is organized into several broad categories as follows:

v Application Control

v Object Persistent Streams

v File Systems

v Text and Internationalization

v 2D Graphics

v User Interface

– Multimedia

– Dynamic Data Exchange

v Error Handling, Tracing, and Testing

Information about user interfaces or 2D graphics has not been included in this
version of the documentation.

Three other categories have comparable functionality to the C++ Standard Library
and Standard Template Library:

v Collections

v Math

v USL Input/Output Streaming

© Copyright IBM Corp. 1996, 2001 1

The C++ Standard Library provides classes and data structures that efficiently
implement the functionality of Collections and Math classes. We suggest that you
use the C++ Standard Library instead of the corresponding classes provided by the
IBM Open Class for new applications that need this functionality.

Platform-specific IBinaryCodedDecimal and IDecimal classes do not have
equivalents in C++ Standard Library, so these IOC classes are still recommended
for manipulation of binary coded decimals.

Application Control
This category provides support for multithreaded execution environments:

v Process classes create and manipulate external processes.

v Thread classes create and manipulate threads.

v Notification classes notify interested objects of changes in other objects.

v Reference counting classes manage thread-safe access to objects that are used
by different processes simultaneously.

Other classes in this category interact with and control the application and its
modules, libraries, resources, environments, profile, and timers.

Thread and resource locking support is available in z/OS UNIX System
Services environment.

Object-Persistent Streaming
This category implements persistent storage mechanisms for Open Class Library
components. It includes the streaming classes that support streaming data in C++
objects in and out of persistent storage.

File Systems
This category provides portable abstractions that allow you to manipulate physical
file system entities such as volumes, directories, and files.

File Systems classes only work in z/OS UNIX System Services environment.

Text and Internationalization
This category provides support for Unicode text strings and easily localizable
components. This category includes the following groups of classes:

v Unicode support classes inquire about the stylistic and semantic properties of
characters, character sets, and scripts (writing systems). These classes also
store and manipulate Unicode text styles.

v Internationalization classes create international applications and manipulate
international text. This includes language-sensitive comparison of text strings,
conversion between character sets, and a locale mechanism for access to
portable and host-specific resources.

v Date and time classes provide you with data types to store and manipulate date
and time information.

Error Handling, Tracing, and Testing
This category provides support for building robust and well-behaved applications:

v Exception classes detect and convey information about unusual circumstances in
applications.

v Tracing classes provide support for your tracing code.

2 IOC Library User’s Guide

v Test classes help you create and run unit tests for your application.

Collections
This category provides a set of commonly used abstract data types including sets,
maps, sequences, trees, stacks, and queues. You can use the notification classes
from the application control classes to allow observation of changes within a
collection.

Math
This category allows you to manipulate complex and binary coded decimal
numbers.

The IBM Open Class library provides support for two different floating point
formats: IEEE and HEX.

USL Input/Output Streaming
The UNIX Systems Laboratories C++ Language System Release 3 (USL) provides
input and output capabilities for C++. (Earlier releases of the USL are known as the
ATT C++ Language System.)

z/OS C/C++ feature comes with ANSI-compliant input and output, or stream
classes. We recommend that you use these stream classes instead to develop
thread-safe applications. The ANSI-compliant stream classes are part of the C++
Standard Library.

The C++ Standard Library
The C++ Standard Library, which includes the Standard Template Library (STL), is
provided with z/OS C/C++ feature. The IBM Open Class Library contains classes
that duplicate functions provided by the C++ Standard Library.

We recommend that you take advantage of the C++ Standard Library in your
applications:

v Use the STL’s containers, iterators, and algorithms instead of the IOC Collections

v Use the STL’s Numerics Library instead of the IOC Math classes

v Use the C++ Standard I/O Stream Library instead of the USL I/O Stream Library.

This release of IBM Open Class uses the C++ Standard I/O Stream Library and
container class templates. The USL I/O Stream Library will continue to be shipped
with the product and may be deprecated in a future release. You may use either the
Standard or USL stream library with the IBM Open Class Library by defining or
undefining the macro __IOC_ANSI_STREAM.

The IOC Collections will continue to be shipped with the product.

Migration Issues: What Version of IBM Open Class Library Should I Use?
There are many issues to consider when deciding which version of IBM Open Class
Library to use for application development. Here are some considerations:

1. If you are not currently using IBM Open Class Library and you are building a
new application, you should first investigate the C++ Standard Library (including
STL) for your application. The IBM Open Class Library is intended to help
customers porting from VisualAge C++ for AIX Version 5. It is not intended for
use in new development, since support will be withdrawn in a future release.

2. If you are currently using IBM Open Class Library and you are not intending to
move to z/OS Version 1 Release 2, then you can continue to use Version 3 of

Chapter 1. IBM Open Class Overview 3

IBM Open Class Library. You can do this by using the TARGET compiler option
discussed in the Specify a Different Target Release on z/OS section.

3. If you are currently using IBM Open Class Library and you intend to move to
z/OS Version 1 Release 2 in order to benefit from the new features in the
compiler, then you will also need to migrate your applications to Version 5 of
IBM Open Class Library provided with the latest version of z/OS C/C++ feature.

Changes in Version 5 of the IBM Open Class Library for z/OS
In addition to all Version 4 and Version 5 enhancements to the core classes of IBM
Open Class Library, there are several areas that have been enhanced specifically
for Version 1 Release 2 of the z/OS operating system:

XPLINK Support
IBM Open Class DLL is built with XPLINK. This improves performance of
XPLINK applications that use IBM Open Class DLL as the constant
switching between XPLINK and non-XPLINK has been eliminated. IBM
Open Class continues to provide XPLINK and non-XPLINK static libraries.

ASCII/EBCDIC Support
IBM Open Class supports both ASCII and EBCDIC applications.

Samples
In this release, IBM Open Class ships its samples in HFS instead of PDS.
Each sample exists in a separate subdirectory of /usr/lpp/ioclib/sample.
Samples for USL I/O Stream Library and USL Math Library are no longer
provided in this release. You may refer to the samples provided by the C++
Standard Library.

Building Debug Versions of IBM Open Class
In this release, IBM Open Class ships its source in HFS instead of PDS.
Users can build a debug version of IBM Open Class by compiling the
source provided in /usr/lpp/ioclib/source. Users can build IBM Open Class
with both XPLINK and non-XPLINK.

decimal Classes
The following classes have been deprecated and replaced in this release:

v decimal->IDecimal

v decimalBase->IDecimalBase

v decimalProxy->IDecimalProxy

v decimalResult->IDecimalResult

You can still use the classes without the “I” prefix, since they are defined as
their respective replacements. However, these classes will no longer be
supported in future releases, when IC_OBSOLETE level is increased above
400. Once IC_OBSOLETE level becomes greater than 400, users will be
able to access these classes only though the IBM Open Class Library
version targeting mechanism. Users are encouraged to use the new names
of these classes as they conform to IBM Open Class naming conventions.

Class Size
The size of some classes, such as ITime, has been changed due to the
addition of a pointer to a “dummy” data class. This data class will be used
for further expansion. The size of the following classes has been changed:

v ITime

v ITimeStamp

v IVersion

4 IOC Library User’s Guide

v IFileOperation

v IFileSystemCopier

v IFileSystemMover

v IPathName

v IStreamableFactory

v IStreamContextFrame

v IStreamModule

v ITypeRepresentation

v ICollation

v IPortableCollation

v ILocaleKey

v ITranscoder

v IStandardTabRuler

v ITextStyleSet

v ITextStyleRunIterator

v IText ITextStorage

v IArgumentDictionary

v ITimingTestStopwatch

v IStartStopTimingTest

v ITest

v ITestCollection

v ITestMultiplexer

v ITimingTest

v ITieredTextBuffer

For example, the ITime class now has a pointer to an instance of the
ITimeData class, as shown below:
#if !defined(IC_PMWIN) //predefine ITimeData class

class ITimeData;
#endif

class IC_EXPORTB ITime {
public:

ITime(); //default constructor for ITime class
// ... most of internals of class removed for illustration

private:
#if !defined(IC_PMWIN)

ITimeData *fData; //add pointer to ITimeData class
#endif

};

Replacing Basic C Types and Structures

Basic C types and structures continue to be replaced by IOC types and
structures, as part of an effort to facilitate platform-independent code. All
new IOC types and structures are included in the header file ilanglvl.hpp.
You should use the new IOC types and structures instead of the C types
and structures.

The following is a partial list of new IOC types and structures added for this
release:

C type or structure IOC equivalent

size_t isize_t

Chapter 1. IBM Open Class Overview 5

C type or structure IOC equivalent

ssize_t issize_t

ptrdiff_t iptrdiff_t

sigset_t isigset_t

time_t itime_t

struct tm itm_t

struct dirent idirent_t

struct sembuf isembuf_t

struct sigaction isigaction_t

struct stat istat_t

struct statvfs istatvfs_t

struct utimbuf iutimbuf_t

Note: These new IOC types and structures exist in an IBM Open Class
namespace called ioc. To fully qualify the name, you should specify both
the namespace and the name. For example, C type size_t becomes IOC
type ioc::isize_t.

“Changes in Version 5 of the IBM Open Class Library”
“Changes in Version 4 of IBM Open Class Library” on page 10

Changes in Version 5 of the IBM Open Class Library
This section describes the major changes in Version 5 of the IBM Open Class
Library. It can help you identify areas in your application that may need to be
changed as you migrate your applications to the version of IBM Open Class
shipped with z/OS C/C++ feature.

This version of z/OS C/C++ feature uses Version 5 of the IBM Open Class Library.
See “Changes in Version 4 of IBM Open Class Library” on page 10 to identify
changes between Version 3 and Version 4 of IBM Open Class.

All changes to IBM Open Class are cumulative in the next higher release unless
otherwise stated.

General
The following table lists changes that apply to IBM Open Class as a whole or apply
to more than one component:

Feature Description

Boolean Values The IBM Open Class recognizes bool, true, and false
as C++ keywords. You may have to update your
compiler options accordingly (remove the nokeyword
option for these keywords).

Building the IBM Open Class
Source

You can build the IBM Open Class Library from its
source for debugging purposes.

6 IOC Library User’s Guide

Feature Description

Import Libraries To build your applications, you must link with the IBM
Open Class import libraries:

v For dynamic linking, you only need libioc.a.

v For static linking, use libiocns.a for the base
classes, libiocclns.a for the collection classes, and
libiocuins.a for the user interface classes.

Unicode You can write Unicode applications with the IBM Open
Class. All components support UTF-8. The non-user
interface and the 2D classes also support UCS-2. The
IBM Open Class has been updated to Unicode 3.0.

64-Bit Support You can write 64-bit applications with the core
classes.

64-bit support is limited to Version 4.3 and
above.

Version Number IC_MAJOR_VERSION = 500
IC_OBSOLETE = 400

IC_MAJOR_VERSION = 510
IC_OBSOLETE = 310

IC_MAJOR_VERSION = 510
IC_OBSOLETE = 310

The IC_MINOR_VERSION is set to 0 and is updated
as program fixes are manufactured and released on a
per-platform basis. These values can be found in the
icomdefs.h file.

Predefined Constants Constants not related to the 2D Graphics and User
Interface components have been moved from
’icconst.h’ to ’icconsta.h’.

Application Control

Feature Description

IThread::start This function creates either a INonGUIThread or a
GUI-based thread determined by
IThread::defaultAutoInitGUI. The default flag can be
set with a call to setDefaultAutoInitGUI(bool initFlag =
true). This restores behavior of the class that existed
prior to Version 4 of IBM Open Class.

IThreadFn The IThreadFn object is now referenced counted. You
can use the functions addRef and removeRef to
extend the lifetime of your IThreadFn object or share
the same IThreadFn object among multithreaded
thread objects.

Chapter 1. IBM Open Class Overview 7

Collection Classes

Feature Description

Standard Template Library You can use Standard Template Library (STL)
containers in an IBM Open Class application. We
recommend that you use the STL instead of the IBM
Collection classes for new development.

Import Libraries For static linking, use the library, libiocclns.a for the
IBM Collection classes.

Wrapper Classes Previous collection wrapper classes that were shipped
in the IBM Open Class source code (in the
source/core/collwrap directory) but were not built into
the libraries have been removed. Applications that
used the undocumented i*2.h headers (for example
iset2.h) will need to be changed to use the
corresponding header without the “2” in its name (for
example ’iset.h’).

Text and International Classes

Feature Description

Unicode 3.0 The IBM Open Class Library has been updated to the
Unicode 3.0 standard. Many character attributes have
been updated since Unicode 2.0 (the supported
standard in Version 4 of IBM Open Class). The
enumerated types in the Unicode Classes have also
been updated to the new standard. You might need to
update your program to cope with this change.

ioc::unichar_t Data Type A more flexible data type
called ioc::unichar_t is now used instead of UniChar.
For compatibility reasons, this new data type has the
same definition as UniChar (unsigned short).
However, if you define the macro
__IOC_USE_WCHAR, the definition of ioc::unichar_t
is changed to wchar_t. This is convenient if you
compile IBM Open Class applications on operating
systems with native support for Unicode in their C
runtimes.

ioc::unichar_t is type defined to wchar_t.

z/OS does not support Unicode natively. The
data type ioc::wchar_t is wide EBCDIC instead of
Unicode if the application is compiled as EBCDIC.
Therefore, you should not define
__IOC_USE_WCHAR in z/OS as the definition will no
longer be valid.

IUnicode::EUnicodeScript The constant kPrivateUse from the enumerated type
IUnicode::EUnicodeScript has been replaced by
kPrivateUseArea.

Default Locale IDate, ITime, ITimeStamp, IString, and IBuffer all
assume C runtime locale by default. Users need to
explicitly call IString::disableInternationalization() to
restore to the original behavior. (The original behavior
is to not use C runtime locale by default.)

8 IOC Library User’s Guide

Feature Description

National Language Support National language support is on by default. The
following statements turn off national language
support:

v
SET ICLUI_I18N=OFF

v
export ICLUI_I18N=OFF

v
– in JCL: GO step parameter

ENVAR(ICLUI_I18N=OFF)

– in USS: export ICLUI_I18N=OFF

IMessageText The return type for IMessageText::messageFile has
been changed from char* to const char*. The return
type for IMessageText::successful has been changed
from int to bool.

The const char* and implicit const char* operators of
this class have been deprecated. Use either text() or
textW() to retrieve message text in either 8-bit char
form or 16-bit ioc::unichar_t form, respectively.

Constructing an IMessageText object with uncasted
NULL pointers for file name and message parameters
can now cause an ambiguity error at compile time.
You should cast these NULL pointers to either const
char* or const ioc::unichar_t*.

Streams and Storage

Feature Description

C++ Standard I/O Stream Library The IBM Open Class supports the C++ Standard I/O
Stream Library. You can use both Standard and USL
versions of I/O Stream libraries as long as the C++
Standard I/O Stream classes explicitly use the std
namespace.

Release to Release Data
Compatibility

To support Release to Release Data Compatibility
(RRDC) streaming for future releases, the streaming
model for the following classes have been changed.
This change breaks streaming compatibility between
Version 4 and Version 5 of IBM Open Class:

v Base Library:

– ITabStop

– IBinaryCodedDecimal

– IDate

– IString

– ITime

– ITimeStamp

– IVersion

Chapter 1. IBM Open Class Overview 9

Error Handling, Tracing, and Testing Classes

Feature Description

Non-GUI Exceptions The user interface exception classes have been
moved from the core library to the UI library. As a
result, your non-GUI applications should include the
file “iexcbase.hpp” rather than “iexcept.hpp” (which
contain the GUI exceptions). This has no effect to GUI
applications.

Deprecated Operators The const char* and implicit const char* operators of
IBaseErrorInfo and its derived classes have been
deprecated. Use either text() or textW() to retrieve
exception text in either 8-bit char form or 16-bit
ioc::unichar_t form, respectively.

Standard C++ Exceptions The IBM Open Class uses the C++ Standard Library
extensively. You may want to catch both Standard
C++ exceptions and IBM Open Class exceptions.

IException::baseLibrary Error Code
Group

This error code group has been changed from “IBM
Class Library” to “IBM Open Class Library.”

ITrace The ITrace::writeString and
ITrace::writeFormattedString functions have been
changed to use const parameters.

“Changes in Version 4 of IBM Open Class Library”

Changes in Version 4 of IBM Open Class Library
This section describes the major changes in Version 4 of the IBM Open Class
Library. It can help you identify areas in your application that you may have to
change as you migrate your applications to the version of IBM Open Class shipped
with z/OS C/C++ feature.

The current version of IBM Open Class in this version of z/OS C/C++ feature is
Version 5. See the section Changes in Version 5 of the IBM Open Class Library to
identify changes between Version 4 and Version 5 of IBM Open Class.

All changes to IBM Open Class are cumulative in the next higher release unless
otherwise stated.

Inheritance
Classes that inherit from either IBase or IVBase no longer exist.

Predefined Constants
Constants that were previously defined in ibase.hpp are now defined in icconst.h.

Threads
Two non-GUI thread classes have been added:

v INonGUIThread

v ICurrentNonGUIThread

These classes provide support for non-GUI threads that were previously provided
by the IThread and ICurrentThread classes in previous releases. You must change

10 IOC Library User’s Guide

your code to use INonGUIThread and ICurrentNonGUIThread. The signature of
some constructors and the start function of INonGUIThread are different than
IThread.

The following thread priority functions are new:

v INonGUIThread::threadPriority

v INonGUIThread::setThreadPriority

They replace the following functions:

v IThread::priorityLevel

v IThread::priorityClass

v IThread::setPriority

v IThread::adjustPriority

INonGUIThread::setThreadPriority is supported but ignored on the z/OS.

Scheduling in this release uses the Windows NT® model: processes can only have
a priority class, and threads can only have a priority level. Thus, the process
automatically sets the priority class for all of its threads, but each thread can
set/reset its own priority within the process. Both process priorities and thread
priorities are specified as enumerated types.

Process scheduling uses the following enum:

v enum INonGUIApplication::EProcessPriority

Thread scheduling uses the following enum:

v enum INonGUIThread::EThreadPriority

These functions have been moved to INonGUIThread and made OS/2-only.

The following table lists other thread classes that are new or extended in this
release:

Class Description

IExternalProcess Basic facilities for starting and controlling the
execution of processes

IThreadLocalStorage Provides a portable way to create and
access per-thread global data

IEnvironment Specifies the execution environment for use
with a process

ICondition A class to be used for thread
synchronization. When used in conjunction
with IResource, provides the classic
“Monitors and Conditions” construct

IPrivateCondition Concrete subclass of ICondition, for use
within a process

ISharedCondition Concrete subclass of ICondition, for use
between processes on a single computer

Chapter 1. IBM Open Class Overview 11

Reference Counting and Thread Functions
The IReference and IRefCounted classes are now obsolete. The IMRefCounted
class has replaced them.

IMRefCounted is a public base class that can be used by any class that needs
reference-counting semantics, similar to the IRefCounted class provided by the IBM
Open Class library in the past. IMRefCounted differs from IRefCounted in two ways

v IMRefCounted is thread safe. That is, its addRef, removeRef, and count member
functions can be called from multiple threads simultaneously without causing data
corruption.

v When an IMRefCounted object is created, its initial reference count is set to 0
rather than 1, which is what IRefCounted uses. An initial count of 0 makes
IMRefCounted work much more cleanly with smart pointer classes such as
ICountedPointerTo.

One result is the removal of IRefCounted as the base class of IThreadFn.
Consequently, code that called addRef or removeRef on an IThreadFn object no
longer compiles.

If your application uses reference counting to prolong the lifetime of the IThreadFn
object beyond that needed by the IThread or INonGUIThread object running it, then
you must change your code to create a new IThreadFn object for each IThread or
INonGUIThread that needs it.

Boolean Type Definition
Boolean and IBoolean have been changed to bool to meet standards.

Collection Classes
These classes now support interest-based notification and streaming.

Text and Internationalization Classes
These classes are new in this release. It provides support for creating
internationalized applications that handle text expressed in various encoded
character systems. Using these classes, you can transcode text expressed in
supported character encoding systems to and from Unicode. IText class provides
support for Unicode data, and transcoder classes provide the ASCII to Unicode
conversion. Collation is also supported. The primary classes provided by the Text
Framework are:

v IText, a variable-length styled string class you can use for storing styled or
unstyled international text.

v ITextBoundary, which implements methods for locating boundaries of characters,
words, lines, and sentences.

v Style classes, which can be applied to individual characters, ranges of
characters, or paragraphs.

v Iterator classes, which provide access to the character data in IText objects.

v Collation classes that support comparing Unicode string in a cultural-sensitive
manner.

v Transcoder classes that support conversion of a string from one codepage to
another.

The isxxx functions (for example isDigits()) from IString return false for empty string.
This is a change in behavior from Version 3 of C Set++ for AIX.

12 IOC Library User’s Guide

Notification Classes
These classes have been extended with the following features:

v A filtering mechanism so that the client object can specify what types of
notification to receive

v Asynchronous, in addition to synchronous, notification

Application Control
The Application Control classes have the following enhancements:

v Distinction between non-GUI applications (INonGUIApplication) and GUI
applications (IApplication)

v Distinction between non-GUI current applications (ICurrentNonGUIApplication)
and GUI current applications (ICurrentApplication). You must change your code
to use the INonGUIApplication and ICurrentNonGUIApplication classes in order
to work with non-GUI applications.

v New DLL loading mechanism allows loading DLLs from the user’s NLSPATH

Test Classes
The Test classes are new in this release. These classes include the following
features:

v ITest abstract base class provides a standard testing API.

v ITestCollection is a collection of ITest objects and allows them to be run
sequentially.

v ITestMultiplexer allows multiple decision functions applied to a single test target.

v ITimingTest can measures the time it takes to perform a specific operation.

File Systems
The File System classes are new in this release. It gives users access to all file
system objects such as volumes, directories, files, file contents and operations in a
platform-independent manner. The following are typical tasks you can perform using
the File System classes:

v Creating, moving, copying, deleting, locating, and manipulating file system
objects.

v Manipulating and parsing pathnames.

v Accessing the attributes of files, directories, and volumes.

v Accessing the contents of volume, directory, and file objects using the IBM Open
Class stream classes.

v Iterating through directories and volumes.

Streaming
Capabilities supported by the Streaming classes include monomorphic streaming,
polymorphic streaming, platform-to-platform data compatibility (a document
streamed out on one platform will be readable on another platform), and
release-to-release data compatibility (a document written by one version of an
application or system will be readable by a newer or an older version).

Deleted or Replaced Functions
The following functions have been deleted. Their replacement (if any) is shown in
the third column.

Chapter 1. IBM Open Class Overview 13

Type Before Version 4 Version 4 and later

constructor ICLibErrorInfo
::ICLibErrorInfo
(const char* CLibFunctionName = 0)

ICLibErrorInfo
::ICLibErrorInfo
(const char* CLibFunctionName)

function (IResource class)
virutal IResource&
lock(long timeOut = -1)

(IResource class)
virtual IResource&
lock(long timeOut = -1) = 0;

function (IResource class)
virutal IResource&
unlock()

(IResource class)
virtual IResource&
unlock() = 0;

function INotifier
::observerList()

INotifier
::observerList
(const IInterest*)

function IStandardNotifier
::observerList()

IStandardNotifier
::observerList
(const IInterest*)

function IObserver
::handleNotificationsFor
(INotifier&,
const IEventData&)

IObserver
::handleNotificationsFor
(INotifier&,
const INotificationId&)

or

IObserver
::handleNotificationsFor
(IInterest&)

nested class IObserverList::Cursor

function IObserverList
::elementAt
(const Cursor&)

function IObserverList
::removeAt
(const Cursor&)

function IObserverList
::numerOfElements()

function IBuffer::addRef()

function IBuffer::removeRef()

“Changes in Version 4 of the IBM Collection Classes”
“Deprecated Functions in Version 4 of the IBM Open Class Library” on page 16
“Changes in Version 5 of the IBM Open Class Library” on page 6

Changes in Version 4 of the IBM Collection Classes

Backward-Compatible Items
The following items from former releases are compatible with this release:

Reference Classes
Reference classes are no longer necessary for polymorphic use of the collections.
The concrete collection classes are now directly derived from the abstract class

14 IOC Library User’s Guide

hierarchy. A linkage of abstract and concrete classes through reference classes is
therefore superfluous. Nevertheless you can continue using the reference class
syntax in existing programs.

IIterator and IConstantIterator
The classes IIterator and IConstantIterator are now called IApplicator and
IConstantApplicator. The new names express more precisely what the purpose of
objects from these classes is: They do not iterate over a collection themselves, but
they provide a function that is applied to the elements of a collection during iteration
with allElementsDo.

The classes IIterator and IConstantIterator are still available but not recommended.

The forCursor macro
Instead of the forCursor macro, the forICursor macro is introduced. The forCursor
macro is still available. However, as with the iterator classes, it is recommended
that you use the new version.

IECOps
Previously all implementation variants of the collections bag, set, sorted bag and
sorted set used the element operation class IECOps. Now these collections require
only class ICOps which is a subset of IECOps. IECOps is no longer needed, yet it
is still available.

Naming Conventions
New names have been introduced for the implementation variants as well as for the
corresponding header files. The old names can still be used in existing programs.
Consider the key set as example:

Old Names New Names

IKeySet ikeyset.h IKeySet iks.h

IKeySetAsAvlTree iksavl.h

IKeySetOnBSTKeySortedSet iksbst.h IKeySetAsBstTree iksbst.h

IHashKeySet ihshks.h IKeySetAsHshTable ikshsh.h

IKeySetOnSortedLinkedSequence ikssls.h IKeySetAsList ikslst.h

IKeySetOnSortedTabularSequenceikssts.h IKeySetAsTable ikstab.h

IKeySetOnSortedDilutedSequence ikssds.h IKeySetAsDilTable iksdil.h

Incompatibilities
The following items are not compatible with the new collection class library release:

New class hierarchy
The structure of the collection classes has changed in Version 4 of the IBM Open
Class library. All classes, including the concrete classes, are now related in an
abstract hierarchy. This abstract hierarchy makes use of virtual inheritance. When
you derive from a Collection class and implement your own copy constructor, you
must initialize the virtual base class IACollection<Element> in your derived classes.
Therefore, if you have derived from a concrete Collection class that was shipped
prior to Version 4 IBM Open Class, you will have to change the implementation of
your copy constructor by adding the virtual base class initialization.

The newCursor method
In contrast to previous releases, the return type of the newCursor method is now for
any collection a pointer to the abstract cursor class ICursor (ICursor*).

Chapter 1. IBM Open Class Overview 15

Deriving from Reference Classes
You can still derive from reference classes without overriding existing collection
class member functions. Yet, you can no longer override existing collection class
functions and use your derived collection class in a polymorphic way without
additional effort.

“Changes in Version 4 of IBM Open Class Library” on page 10
“Deprecated Functions in Version 4 of the IBM Open Class Library”

Deprecated Functions in Version 4 of the IBM Open Class Library
As the Open Class Library functionality increases, the interface must be changed to
improve the quality and design. Deprecated interfaces are listed below so you can
migrate to replacement classes and functions.

There are several important guidelines regarding deprecated functions:

v Usually the implementation of a deprecated function calls the function that has
replaced it.

v Typically, we remove the deprecated interface in a version of library in the next
major release of the library. We do not document deprecated interface in the
main body of the reference manual. Instead, it is documented in a section which
identifies deprecated interface and replacement classes and functions if they are
available.

The following are changes in the language, functions, enums, and types in Version
4 of the IBM Open Class Library:

Type Name Before Version 4 Name in Version 4 and
Later

typedef Boolean bool

typedef IBoolean bool

constant False false

function IApplication
::adjustPriority

INonGUIApplication
::setProcessPriority

function IApplication
::setPriority

INonGUIApplication
::setProcessPriority

class IBase

function IBase
::asString() const

IStringGenerator
::stringFor() const (where the
IStringGenerator was
constructed passing in an
instance of an
IStringGeneratorasString
generator function)

class IBase
::Version

IVersion

constructor IBitFlag (unsigned long) IBitFlag(unsigned long, const
unsigned long[])

constructor IBitFlag (unsigned long,
unsigned long)

IBitFlag(unsigned long, const
unsigned long[])

16 IOC Library User’s Guide

Type Name Before Version 4 Name in Version 4 and
Later

function IBitFlag
::asExtendedUnsignedLong (
) const

No true replacement. Classes
using IBitFlag objects must
provide their own mapping
logic (IWindow
::convertToGUIStyle is an
example).

function IBitFlag
::asUnsignedLong () const

No true replacement. Classes
using IBitFlag objects must
provide their own mapping
logic (IWindow
::convertToGUIStyle is an
example)

function IBitFlag
::setValue(unsigned long,
unsigned long)

IBitFlag
::setValue(const IBitFlag&)

typedef IContextHandle IAnchorBlockHandle

typedef IErrorInfo IBaseErrorInfo

enum INonGUIApplication
::PriorityClass

INonGUIApplication
::EProcessPriority

constructor INonGUIThread(const
IReference<IThreadFn>&)

INonGUIThread(IThreadFn*)

function INotificationEvent
::eventData

function INotificationEvent
::hasNotifierAttrChanged

function INotificationEvent
::notifier

function INotificationEvent
::observerData

function INotificationEvent
::setEventData(const
IEventData&)

function INotificationEvent
::setNotifierAttrChanged
(bool)

function INotificationEvent
::setObserverData(const
IEventData&)

function INotifier
::addObserver(IObserver&,
const IEventData&)

INotifier
::addObserver
(IObserver&,
const IInterest&)

function IStandardNotifier
::addObserver
(IObserver&,
const IEventData&)

IStandardNotifier::
addObserver
(IObserver&,
const IInterest&)

constant IString
::and

IString::
bitAnd

constant IString
::exclusiveOr

IString::
bitExclusiveOr

Chapter 1. IBM Open Class Overview 17

Type Name Before Version 4 Name in Version 4 and
Later

constant IString
::or

IString::
bitOr

function IThread
::priorityLevel

INonGUIThread
::threadPriority

function IThread
::setPriority

INonGUIThread
::setThreadPriority

class IVBase

constant True true

“Changes in Version 4 of IBM Open Class Library” on page 10
“Changes in Version 4 of the IBM Collection Classes” on page 14

IBM Open Class Applications
Include the Open Class Library Headers
A class library is a collection of classes with well-defined interfaces and operations.
To use these classes, you have to first make these interfaces visible to your
program. This is usually done by including the appropriate header files in your
programs.

To include an interface, use the directive #include <filename>, where filename is the
name of the header file. Place this statement at the beginning of the program that
requires any of the classes, function, or operators defined in the header file. Then,
in the body of your program, you can use a class, function, or operator defined in
the header file, as well as derive new classes and overload the functions and
operators.

Create Applications and Naming Files
Creating an Open Class Library application is the same as creating a C++
application. You begin by designing the interfaces of your classes and make use of
any existing Open Class Library classes as much as possible. Although there is no
restriction on how C++ files are named, it is often a good idea to use a particular
convention. For an Open Class Library application, the source file is usually named
after the name of the class that resides in the file. For example, a class “ITest” is
defined in the file “itest.cpp” and its interface is defined in “itest.hpp”.

The following list describes files that a typical Open Class application whose source
resides in HFS on z/OS requires:

File Name Contains

filename.cpp Primary C++ code for your application.

filename.hpp

Declaration of any class or classes that you
create. You can put each class in a separate
.hpp file or all classes in one file. If your
classes are used in only one .cpp file, they
can be declared in that .cpp file instead.

18 IOC Library User’s Guide

File Name Contains

filename.h
A header file that contains your symbolic
definitions. Include these as macro source
files in your project’s configuration.

ixxxxxxx.hpp

A header file that contains information about
an Open Class Library class that your
application uses. All Open Class Library
header files begin with the letter “i.”

makefile or Makefile The makefile of your application

If the you place your source in DM, it is recommended that you create a
separate iSeries library for each application. The library contains iSeries source
physical files (created with the CRTSRCPF CL command):

File Name Contains

filename.cpp Primary C++ code for your application.

filename.hpp

Declaration of any class or classes that you
create. You can put each class in a separate
.hpp file or all classes in one file. If your
classes are used in only one .cpp file, they
can be declared in that .cpp file instead.

filename.h
A header file that contains your symbolic
definitions. Include these as macro source
files in your project’s configuration.

ixxxxxxx.hpp

A header file that contains information about
an Open Class Library class that your
application uses. All Open Class Library
header files begin with the letter “i.”

control language
The CL program used to build your
application.

If you place your source in data sets, it is recommended that you create a
separate data set high level qualifier for each application. The following list
describes files that a typical Open Class application whose files reside in data sets
requires:

Data Set Name Member Name Contains

DSHLQ.CPP filename
Primary C++ code for your
application.

DSHLQ.HPP filename

Declaration of any class or
classes that you create. You
can put each class in a
separate .hpp file or all
classes in one file. If your
classes are used in only one
.cpp file, they can be
declared in that .cpp file
instead.

Chapter 1. IBM Open Class Overview 19

Data Set Name Member Name Contains

DSHLQ.H filename

A header file that contains
your symbolic definitions.
Include these as macro
source files in your project’s
configuration.

CBC.SCLBH.HPP ixxxxxxx

A header file that contains
information about an Open
Class Library class that your
application uses. All Open
Class Library header files
begin with the letter ″i.″

CBC.SCLBH.H ixxxxxxx

An include file that contains
information about an Open
Class Library class that your
application uses. All Open
Class Library include files
begin with the letter “i”.

CBC.SCLBH.INL ixxxxxxx

An include file that contains
information about an Open
Class Library class that your
application uses. All Open
Class Library include files
begin with the letter “i”.

CBC.SCLBH.C ixxxxxxx

An include file that contains
information about an Open
Class Library class that your
application uses. All Open
Class Library include files
begin with the letter “i”.

DSHLQ.JCL BLDJCL
The JCL used to build your
application.

Use Command-Line Arguments
With ICurrentNonGUIApplication , you can save and query the command line
arguments of your application. Set the arguments by calling setArgs() with the
arguments that were passed to the main function, or by calling setArgsW() for
Unicode arguments.

To query the number of arguments, use the member function
ICurrentNonGUIApplication::argc(). This member function always returns a non-zero
value because it has at least the name of the application as an argument.

To get the nth argument, use the member function
ICurrentNonGUIApplication::argv(), where the argv(0) component is always the
name of the application. You can also call ICurrentNonGUIApplication::argvW(),
which returns an IText object. Because argv() returns an IString, you can use all the
functions provided by this class.

The following example demonstrates the use of command-line arguments, as well
as the inclusion of header files into an application. The example accepts one
argument, a string. It stores that string in an IText object, then outputs that string
several times according to a macro defined in a header file. This example is
intentionally convoluted to demonstrate the use of the different kinds of files listed in
the previous table.

20 IOC Library User’s Guide

The example consists of the following files:

v basic.cpp

v basic.hpp

v basic.h

v makefile

basic.cpp
The main() function creates a MyClass object called currentData. The MyClass
constructor takes a reference of an ICurrentNonGUIApplication object as its
argument. When the main() function creates the MyClass object, it saves the
command line arguments with the setArgs() function.

The MyClass constructor accesses the name of the application by calling argv(0).
The constructor accesses the value of the first argument by calling argv(1):
#include <ingapp.hpp>
#include <iostream.h>
#include “basic.hpp”

int main(int argc, char *argv[])
{

// Create a MyClass object using the current application object
// and save the command line arguments with the setArgs() function
MyClass currentData(ICurrentNonGUIApplication::current().setArgs(argc, argv));

// Output the name of the application (the first argument)
cout << “Name of application: ” << currentData.applicationName << endl;

// Output the second argument
for (int i = 1; i <= REPEAT; i++)
{

cout << i << “: ” << currentData.stringArgument << endl;
}
return 0;

}

MyClass::MyClass(const ICurrentNonGUIApplication& myApplication)
{

// Store the first argument as the name of the application
applicationName = myApplication.argvW(0);

// Store the second argument as the string to output.
// If the second argument does not exist, then store
// a default string.
if (myApplication.argc() > 1)
{

stringArgument = myApplication.argvW(1);
}
else
{

stringArgument = “Default string”;
}

}

basic.hpp
This file contains the declaration of the MyClass class.
// basic.hpp

#include “basic.h”

#include <itext.hpp>

class ICurrentNonGUIApplication;

Chapter 1. IBM Open Class Overview 21

class MyClass
{

public:
MyClass(const ICurrentNonGUIApplication& myApplication);

IText applicationName;
IText stringArgument;

};

basic.h
This file defines the macro used in this application.
// basic.h

#define REPEAT 7

makefile

Use the make command to compile this example with the following
makefile. You do not need to put the names of any IBM Open Class header files in
the makefile:
makefile for basic

--- Body ---
basic: basic.o

cxx -o basic basic.o
basic.o: basic.cpp basic.h

cxx -+ -W c,'langlvl(extended)'
-D_SHR_ENVIRON -D_MSE_PROTOS
-D_OPEN_SOURCE=3 -D_AE_BIMODAL
-D_ALL_SOURCE -c basic.cpp

clean:
rm -f basic.o basic

In order for the make command to work on z/OS, it needs to know where to find
IBM Open Class files, as specified by environment settings. The following
environment profile specifies IBM Open Class settings:
export _CXX_CLASSLIB_PREFIX=CBC
export _CXX_INCDIRS=“/usr/include:/usr/lpp/ioclib/include”

Use the make command to compile this example with the following
makefile. You do not need to put the names of any IBM Open Class header files in
the makefile:
makefile for basic

--- Body ---
all: basic
basic: basic.o

xlC_r -o basic basic.o -lioc
basic.o: basic.cpp basic.h

xlC_r -c -qchars=unsigned -qansialias \
-qnotempinc -qnoinfo -qrtti=all \
-I. -obasic.o -+ basic.cpp

clean:
rm -f basic.o basic

On the iSeries there are two common ways to compile an IOC application,
using a makefile or using a CL program. To compile using a makefile, place the four
files in an Integrated File System (IFS) directory such as /examples/basic. On the
iSeries, a makefile can be run in the qsh shell interpreter (QSH). To start the QSH,

22 IOC Library User’s Guide

enter the CL command STRQSH. Change your current directory to the directory
where you placed your files. In our example, enter the command:
cd /examples/basic

To run the makefile, enter the command gmake. The gmake command searches for
a file named ’makefile’ in your current directory.

Use the gmake command to compile this example with the following makefile. You
do not need to put the names of any IBM Open Class header files in the makefile:
makefile for basic
--- Body ---
all: basic
basic: basic.o \

xlc -o basic basic.o
basic.o: basic.cpp basic.h

xlc -c -qlonglong -qifsio=64 \
-qlocale=localeucs2 -qrtti=all \
-I. -obasic.o -+ basic.cpp

clean: rm -f basic.o basic

To compile your application using CL commands, you need to compile and bind
your application. To compile, enter the CRTCPPMOD CL command. You can
compile source with the CRTCPPMOD command that exists in IFS or in data
management (DM). Assuming your source is in IFS, as specified above, the
CRTCPPMOD command looks like:
CRTCPPMOD MODULE(QGPL/BASIC) SRCSTMF('/examples/basic/basic.cpp')
OPTION(*LONGLONG *RTTIALL) SYSIFCOPT(*IFS64IO) LOCALETYPE(*LOCALEUCS2)
INCDIR('/examples/basic')

The output of the CRTCPPMOD CL command is a *MODULE object, that needs to
be bound into a program object. The CL command CRTPGM invokes the iSeries
binder. For example:
crtpgm qgpl/basic

Use the nmake command to compile this example with the following
makefile:
makefile for basic.exe
#
makefile assumptions:
- Environment variable INCLUDE contains paths to:
IBM Compiler target_directory\include;
- Environment variable LIB contains paths to:
IBM Compiler target_directory\lib;
- current directory will be used to store:
object, executable, and resource files

--- Tool defintions ---
ERASE=ERASE
GCPPC=ICC
GLINK=ICC

--- Tool flags ---
ICLCPPOPTS=/Ft- /Gd+ /Ge+ /Gm+ /qrtti=all
GCPPFLAGS=$(LOCALOPTS) $(ICLCPPOPTS)
GCPPLFLAGS=/B“/debug”

--- Body ---
all: basic.exe

basic.exe: basic.obj
$(GLINK) $(GCPPLFLAGS) $(GCPPFLAGS) /Fe“basic.exe” basic.obj

Chapter 1. IBM Open Class Overview 23

basic.obj: basic.cpp basic.hpp basic.h
$(GCPPC) /C+ $(GCPPFLAGS) basic.cpp

--- Clean ---
clean:

-$(ERASE) basic.exe
-$(ERASE) basic.obj

Output
Suppose that you execute this example with the following command:
basic “Hello World!”

This is the output:
Name of application: basic
1: Hello World!
2: Hello World!
3: Hello World!
4: Hello World!
5: Hello World!
6: Hello World!
7: Hello World!

The created program object can be run in QSH or from a CL command
entry screen. From a CL command entry screen, enter the command:
CALL PGM(QGPL/BASIC) PARM('Hello World!')

“Chapter 1. IBM Open Class Overview” on page 1

“Design an IBM Open Class Application”

Design an IBM Open Class Application
This section gives recommendations for designing IBM Open Class Library
applications. These general recommendations should not substitute for detailed
design guidelines. Many of the topics listed here require a great deal of
consideration when you design complex object-oriented applications.

Including the IBM Open Class Library
To use the classes, functions and operators available in the IBM Open Class
Library, you must include the parts of the library’s interface that you need in your
C++ source code. To include an interface, you must include the following statement
in any file using this interface:
#include <filename>

where filename is the name of the header file.

Then, in the body of your program, you can use a class, function or operator
defined in the header file, as well as derive new classes and overload the functions
and operators. See the topic Libraries, Headers, and Conventions for more
information about how the IBM Open Class names its header files and classes.

Create Your Own Classes
Most applications require you to derive new classes from existing classes. You
derive new classes to inherit implementation details from a base class.

24 IOC Library User’s Guide

Do not derive from a particular base class unless you have a good reason to do so.
When creating data type or settings classes, do not derive from a base class,
unless for some reason your new class must derive from one of your own base
classes.

Choose Multiple Inheritance or Composition
It is easier to inherit from multiple classes when you design simple applications.
Because all of the functions from the derived classes are immediately available, you
can easily use them as-is and not override them.

However, as your application evolves into a more complex application, it can be
difficult to anticipate how changes in the functions of the inherited classes will affect
the derived class.

Override Virtual Functions
When you override inherited member functions, such as INotifier::notifyObservers(),
that are defined as virtual, declare the overriding function as virtual too. This
improves the readability of the inheriting class by saving the reader from having to
search up the inheritance chain to discover that the function was originally defined
as virtual.

Delete Objects Created with New
If you create objects dynamically by using the new operator, delete them by using
the delete operator. If an object is composed of dynamically created objects, that is,
you create the composed objects with the new operator in the constructor of the
composing object, then you should delete the object in the destructor of the
composing object.

The following are exceptions to this rule:

v Classes derived from IMRefCounted.

v ICountedPointerTo<> template objects.

v Objects that you pass to functions with “adopt” semantics, such as ITest* pointers
you pass to ITestCollection::adoptTest(ITest*).

Coding with the IBM Open Class under z/OS UNIX System Services

If you use the IBM Open Class in applications that run under z/OS UNIX
System Services, the following restrictions apply:

v The IBM Open Class is not safe to use with respect to asynchronous signals. In
particular, the behavior of the IBM Open Class is undefined if you invoke one of
the following from a signal handler during asynchronous signal handling:

– Any class from the IBM Open Class Library

– The functions longjmp() or siglongjmp()

Avoid invoking these classes from any signal handler. Refer to the z/OS C/C++
Run-Time Library Reference for more information on using asynchronous signal
handling C/C++ Run-Time Library functions.

v Do not call fork() in user code that has been invoked from IBM Open Class code
(for example, in an override of IStringTest::test or in an implementation of
allElementsDo from the Collection Classes). Use the function spawn() instead.

“Chapter 1. IBM Open Class Overview” on page 1
“IBM Open Class Applications” on page 18

Chapter 1. IBM Open Class Overview 25

“IBM Open Class Libraries, Headers, and Conventions” on page 43

Create Cross-Platform Applications
There are many things to consider when you create applications that are portable
across OS/2, Windows, OS/400, z/OS, and AIX. This section discusses how the
Open Class Library differs between platforms and how you can include nonportable
functions in a portable application.

Classes and Member Functions that are Platform Specific and Ignored
Some classes and member functions from the Open Class Library are platform
specific. Attempts to use these classes and member functions for platforms other
than those platforms they were designed for will result in a compile-time error.

The Open Class Library makes these classes and member functions platform
specific by using the #ifdef and #endif preprocessor directives, and the macro
symbols listed in the table at the bottom of this page.

Also, there are some classes and member functions that are ignored on certain
platforms. This means that you will get valid compile results because the class or
member function is ignored. An example is using the
IRadioButton::disableAutoSelect() function in AIX. The autoselect style is always in
effect for Motif. Therefore, when your program calls disableAutoSelect(), the Open
Class Library does nothing. Many of these ignored classes and member functions
result from “look and feel” differences between OS/2 Presentation Manager®,
Windows, and Motif.

The Open Class Library notes which classes and functions are ignored on each
platform with flags in the .hpp files. For example, to see if your application contains
any classes or member function ignored on the AIX platform, define the macro
IC_MOTIF_FLAGNOP. See the topic Obsolete or Ignored Member Functions for
more information.

This causes all of the ignored classes and member functions to not be declared, so
any occurrence of an ignored class or member function in your application produces
a compiler error. Note that you cannot link using object files built with
IC_MOTIF_FLAGNOP or other options that notes which classes and member
functions are ignored. The use of these compile-time checks causes the compiler to
generate code that does not match the IOC runtime libraries.

Include Nonportable Functions in Portable Applications
You may want to take advantage of system-specific APIs while developing an
application with Open Class Library.

The Open Class header files environment symbols are defined in icomdefs.h. To get
these symbols, include the icomdefs.h. file. The following lists the symbols and the
corresponding platforms the symbol is defined when compiling:

Symbol Platform

IC_PM

IC_WIN

26 IOC Library User’s Guide

Symbol Platform

IC_MOTIF

IC_PMWIN

IC_MOTIFPM

IC_MOTIFWIN

IC_MVS

IC_400

IC_MVS400

IC_AIX

IC_POWER

“Obsolete or Ignored Member Functions” on page 41

Specify a Different Target Release on z/OS
Programming languages such as RPG, COBOL, C and C++ allow a programmer to
create an object module that is targeted to run on the current release of the
operating system, or on a previous release of the operating system.

For z/OS, C/C++ compiler allows you to target the following versions of the
operating system:

v OS/390 Version 2 Release 6

v OS/390 Version 2 Release 7

v OS/390 Version 2 Release 8

v OS/390 Version 2 Release 9

v OS/390 Version 2 Release 10

v z/OS Version 1 Release 1

v z/OS Version 1 Release 2

The TARGET option provided by the C/C++ compiler allows you to specify the
release level on which you intend to use the object module.

IBM Open Class library also supports targeting an object module for the current or
previous releases. In order to accomplish this each IOC header is guarded with the
IC_TARGET macro. This macro is set to different values depending on which
release you want to target.

IC_TARGET definitions can be found in header ’icomdefs.h’ It is set to the following
values:

Target Release IC_TARGET Value

OS/390 Version 2 Release 6 306

OS/390 Version 2 Release 7 307

OS/390 Version 2 Release 8 308

Chapter 1. IBM Open Class Overview 27

Target Release IC_TARGET Value

OS/390 Version 2 Release 9 309

OS/390 Version 2 Release 10 310

z/OS Version 1 Release 1 311

z/OS Version 1 Release 2 500

Any function in IOC which is new as of z/OS Version 1 Release 2 is guarded with
the IC_TARGET macro, with a C++ statement such as:
#if IC_TARGET >= 500

// new code ...
#endif

Programmers writing their code to target multiple releases should also use the
IC_TARGET macro.

“Changes in Version 5 of the IBM Open Class Library” on page 6
“Changes in Version 4 of IBM Open Class Library” on page 10

Compile Open Class Applications
Compile Options
All Open Class executables must use the following options in their makefiles:

Option Description

Makefile:
-qrtti=all

Controls what
run-time type information (RTTI) is
generated. In this case, this option generates
code that supports both the typeid and
dynamic_cast operators.

Makefile:

-lioc

/Gm+

If you are
dynamically linking the Open Class libraries,
this option specifies the compiler to
dynamically link the Open Class Import
Library.

Makefile:
xlC_r

Specifies the predefined option
group xlC_r to use during compilation. The
xlC_r string means the following:

1. Invokes the compiler so that source files
are compiled as C++ language source
code.

2. Sets macro names with the following
values:

v _THREAD_SAFE = 1

v _AIX32_THREADS = 1

v _AES_SOURCE = 1

3. Add the libraries libpthreads.a, libc_r.a,
and
/usr/lib/libc.a.

28 IOC Library User’s Guide

Option Description

Makefile:
-qrtti=all
-qlonglong
-qlocale=localeucs2
-qifsio=64

If compiling using CL commands,
you can choose the CRTCPPMOD or
CRTBNDCPP command. The
parameters/values listed here can be
specified for both of these commands.
OPTION(*RTTIALL)
OPTION(*LONGLONG)
LOCALETYPE(*LOCALEUCS2)
SYSIFCOPT(*IFS64IO)

Makefile:
-D__IOC_ANSI_STREAM

Specifies that the
C++ Standard I/O Stream Library should be
used when streaming in and out IBM Open
Class objects. Only define this value if you
intend to use the C++ Standard I/O Stream
Library instead of the USL I/O Stream
Library.

Makefile:
-W c, ’langlvl(extended)’

This option indicates all language
constructs available with z/OS C/C++
feature. It enables extensions to the ISO
C/C++ standard. The macro
__EXTENDED__is defined as 1.
Note: Do not turn off any sub-options related
to langlvl(extended) option

Makefile:
-D_SHR_ENVIRON -D_OPEN_SOURCE=3
-D_ALL_SOURCE -D_MSE_PROTOS
-D_AE_BIMODAL

Please note that setting
_OPEN_SOURCE macro to another value
may result in unexpected behaviour. For
more information about the feature macros
required, please refer to the z/OS C/C++
Run-Time Library Reference.

Compile z/OS Open Class Programs

If your source code includes the IBM Open Class header files, you must
use the SEARCH compiler option to identify the relevant data sets.

The IBM-supplied cataloged procedures, REXX EXECs and panels include the
standard header file data sets and the class library header file data sets on the
default SEARCH .

Your search path should look like:
SEARCH ('CEE.SCEEH.+','CBC.SCLBH.+')

This will provide access to the following data sets:

v CEE.SCEEH.H (standard header files)

v CBC.SCLBH.H (class library header files)

v CBC.SCLBH.C (class library files)

v CBC.SCLBH.INL (class library files)

v CBC.SCLBH.HPP (class library headers)

Avoid Reserved Pragma Priority Values
The Open Class Library reserves the use of #pragma priority values in the range of
-2147482624 through -2147481600. The C++ compiler reserves the range below

Chapter 1. IBM Open Class Overview 29

that. As a result, avoid using a #pragma priority value less than -2147481599 (this
is equivalent to INT_MIN + 2048) to control the order of static object construction in
your Open Class Library application.

Open Class Library Error and Exception Output
Although Open Class is designed to catch as many errors as possible during the
compilation and link steps, some errors can only be detected at run time. The
classes in Open Class throw C++ exceptions to indicate run-time errors. Errors
messages describing the exception can be seen while debugging, or can be seen in
trace output sent to STDOUT, STDERR or a queue; trace output is only seen if you
have turned tracing on. Your own classes can also throw C++ exceptions and
output trace information in the same way, by using the IException and ITrace
classes.

Link an Application to the Open Class Library

To use dynamic linking, specify link(linkWithSharedLib, yes). To use
static linking specify link(linkWithSharedLib, no). When statically linking on OS/2
and Windows, this option automatically pulls in the necessary Open Class Library
static link libraries.

You do not need to specify which libraries to use because this
happens automatically via #pragma library statements. Only if you build with the
link(defaultLibs,no) will you need to manually include the names of the following
libraries:

v Dynamic linking: import libraries

v Static linking: static libraries, and system libraries to resolve system APIs that
are now called by Open Class code linked into the application

The following additional rules apply when you build your application with the
dynamic libraries, instead of the static object libraries:

1. A DLL using the Open Class Library must link dynamically to the Open Class
Library code (that is, you must link with the Open Class Library import libraries).
In other words, if you build a DLL that uses Open Class, then you must not
build this DLL with the link(linkWithSharedLib,no) option.

2. An .exe using the Open Class Library and calling a DLL that also uses the class
library must link dynamically to the Open Class Library (that is, you must link
with the Open Class Library import libraries).

3. An .exe or .dll file should not link both dynamically and statically to the Open
Class Library code.

Link your AIX application to the Open Class Library by specifying either the
import library or the following static libraries at link time:

v Import library:

– libioc.a

v Static libraries:

– libiocns.a (application control, streams, test framework, and everything else
not listed below)

– libiocclns.a (collection classes)

– libiocuins.a (user interface and 2D graphics)

When linking statically, you also need to specify system libraries to resolve
calls to system APIs made from Open Class code now being linked into the

30 IOC Library User’s Guide

application. The order in which you specify the Open Class libraries and system
libraries is important. If you are only using the core classes or the core and test
framework classes, you link with the following:

v libiocns.a

v libiconv.a

On the iSeries a DLL is known as a service program (OS/400 object type
*SRVPGM). All IOC classes are shipped in one service program called
QYPPOC510. This service program is part of the iSeries C++ bind directory
QYPPLR510 which is automatically used by the binder when binding IOC C++
program objects. No additional binding options are required for IOC programs. IOC
modules can be bound either through makefiles, using the xlc command, or with CL
commands via the CRTPGM or
CRTBNDCPP commands.

Link z/OS Applications to the Open Class Library

The IBM-supplied catalog procedures links the C++ DLL versions of the
IBM Open Class by default. The binder input definition side-decks are in data set
CBC.SCLBSID, members COMPLEX, IOSTREAM, ASCCOLL, IOC, and COLL. ASCCOLL is the
side-deck for OS/390 Version 2 Release 10 Application Support and Collection
classes. IOC and COLL are side-decks for z/OS Version 1 Release 2 Application
Support and Collection classes. Because of definition conflicts, ASCCOLL should not
be specified together with IOC or COLL sidedecks in the environment profile.

If you want to statically bind the Open Class object code instead, you can override
the BIND.SYSLIB concatenation to include the CBC.SCLBCPP2 (or CBC.SCLBCPP) data
set, and override the BIND.SYSIN concatenation to exclude the CBC.SCLBSID
members. Object files for Version 5 of IBM Open Class component are shipped in
CBC.SCLBCPP2 data set. Object files for Version 3 of IBM Open Class component are
shipped in CBC.SCLBCPP data set.

Your application cannot use multiple copies of an IBM Open Class library. If your
application consists of multiple modules (for example, a main module and a DLL)
that use the same class library, make sure that all your modules link dynamically to
the class library. Otherwise, the class library will be linked in multiple times, and
there will be multiple copies in use by your application. The use of multiple copies
of a class library within a single application is not supported, and can have
unexpected results.

Link z/OS Applications to Open Class Libraries that Reside in HFS

You can only link your application to the IBM Open Class libraries if the
libraries reside in HFS. The IBM Open Source Library source and the makefiles
required to rebuild debuggable versions of IBM Open Class Library reside in HFS.
You will need to rebuild the IBM Open Class Library before you can link your z/OS
applications to it.

After you have rebuilt the IBM Open Class Library in HFS, you can link to to your
z/OS application in one of the following ways:

To dynamically link, specify the side-deck file in the link step. For example, if the
dynamic Open Class library is called libioc, then the side-deck file is named
libioc.x. You link this side-deck file with the following command:
cxx -o appName appName.o libioc.x

Chapter 1. IBM Open Class Overview 31

To statically link, specify the name of the archive file in the link step. The static
library will be named libxxxx.a where xxxx is the name of the static library. For
example, if the dynamic Open Class library is called libioc, then the static Open
Class library is named libiocns.a. You link this static library with the following
command:

cxx -o appName appName.o -lioc -L{location of the static library}

For more information about required environment variables, refer to “Appendix F”
section of z/OS C/C++ User’s Guide.

Run z/OS Applications with Open Class Libraries

z/OS IBM Open Class DLLs are in data set CBC.SCLBDLL2, members IOC
(Application Class Library) and COLL (Collection Class Library). OS/390 Version 2
Release 10 DLLs are in data set CBC.SCLBDLL members COMPLEX (Complex
Mathematics Class Library), IOSTREAM (I/O Stream Class Library), and ASCCOLL
(Collection Class Library and Application Support Class Library). Both
CBC.SCLBDLL and CBC.SCLBDLL2 must be available at run time.

The CEE.SCEERUN and CEE.SCEERUN2 data sets must also be available at run
time. These data sets can be in the system libraries, your JOBLIB statement or
your STEPLIB statement. If you application was compiled using non-XPLINK and
dynamically linked with XPLINK z/OS IBM Open Class DLLs, you must specify
XPLINK(ON) run-time option.

IBM Open Class library requires the POSIX(ON) run-time option to be specified.
This option is required for the POSIX threading functions, and the system and
signal handling functions. An application using file systems classes from IBM Open
Class must run on a system where the z/OS UNIX kernel is available and active, as
the implementations of file systems classes are limited to UNIX Systems Services.

“Chapter 1. IBM Open Class Overview” on page 1
“IBM Open Class Applications” on page 18

“Build a 64-Bit Enabled Application”
“Build the IBM Open Class Library Source Code for Debugging Purposes” on
page 33

“IBM Open Class Libraries, Headers, and Conventions” on page 43

Build a 64-Bit Enabled Application
64-bit mode is not supported in this release.

You can build in 64-bit mode IBM Open Class applications that do not
contain any User Interface or 2D Graphics code.

New typedefs have been added for creating portable applications that can be built
using either the 32-bit or 64-bit definitions of longs. When you build your application
in 64-bit mode, the macro __IOC_64BIT is set within the IBM Open Class Library.
This macro controls the use of the typedefs for long or integer variables. See an
example of this in the istring.hpp file found in the include directory.

32 IOC Library User’s Guide

To build a 64-bit application, use either one of these build options:

v OBJECT_MODE environment variable (for example, export OBJECT_MODE=64)

v -q64 compiler option

On the iSeries, all IOC applications are built in 64-bit mode. Thus the
macro __IOC_64BIT is always defined for IOC applications on the iSeries. In
general, all numeric typedefs are defined to be ’long long’, and are 8-byte integers.
Although IOC itself has been 64-bit enabled, the C run time APIs (for example,
memcpy) are not 64-bit enabled. In cases where IOC passes a numeric value too
large for the C run time to handle, an exception is thrown
(IC_BINARY_DATA_OVERFLOW).

“Chapter 1. IBM Open Class Overview” on page 1
“IBM Open Class Applications” on page 18

“Compile Open Class Applications” on page 28

Build the IBM Open Class Library Source Code for Debugging
Purposes

You can build debuggable versions of the IBM Open Class libraries.

Conditions
The IBM Open Class source is provided only to help you debug your code. You
cannot redistribute the source or binary files you build from these source files.

Prerequisites

To build with the batch compiler you will need xlC_r and GNU Make 3.77
(or above) (ftp://ftp.gnu.org/pub/gnu/make)

You must have QSH (CL command STRQSH) installed, the xlc command
available in the QShell Interpreter (QSH), GNU Make, and the IOC source code. As
of V5R1 of iSeries, the QShell Interpreter is option 30 of the 5722SS1 product, and
is normally installed by default. The V5R1 C++ Compiler is option 52 of 5722WDS,
and the IOC source is option 55 of 5722WDS. The IOC source code is placed in
the IFS directory ’/QOpenSys/QIBM/ProdData/C++Compiler/source/ioc’ by the install
process.

The GNU Make utilities are not shipped with the system, but can be downloaded
from http://www.iseries.ibm.com/developer/porting/gnu_utilities.html. From the GNU
web site, download a ZIP file, which contains an iSeries savefile. The iSeries
savefile contains an iSeries library called ’GNU’. This library contains all the
program and service program objects necessary to run the GNU utilities. To actually
run them from within the QSH, you should first run the install program (program
object ’INSTALL’ in library ’GNU’). After running the install program, various
symbolic links are made in the ’/usr/bin’ IFS directory.

The GNU Make utilites are not shipped with the system, but can be
downloaded from
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1toy.html.

Chapter 1. IBM Open Class Overview 33

Note: GNU Make is not officially supported by IBM.

Operating System Prerequisites
In order to build the IBM Open Class libraries, you must have a minimum amount of
disk space and memory available as listed in the following table:

Component Requirements

Disk space x600MB

Memory x512MB

Environment Variable Settings
The IOC build procedure uses the following environment variables:

Environment Variable Description Default Value When Undefined

OPENCLASSBUILDOPTIONS Allows the user to specify
different options during IOC
build.

—xplink
—debug
—objmodel-compat

OPENCLASSBUILDTOS Defines the build target operating
system. The following are the
possible values:

aix42, aix43

mvs

os4

You must define this variable.

OPENCLASSROOT If this is defined, the IOC source
files are assumed to be stored in
the directory
$(OPENCLASSROOT)/iocsrc.

If this is not defined, the IOC
source files are assumed to be
stored in the directory
/usr/vacpp/iocsrc.

If OPENCLASSROOT
is not defined, IOC source is
assumed to be stored in
/usr/lpp/ioclib/source.

OPENCLASSBUILDROOT Defines where the newly built
libraries are stored.

New libraries are stored in the
following directory:

$(OPENCLASSBUILDROOT)/lib/
$(OPENCLASSBUILDTOS)

Files generated during the build
are stored in the following
directory:

$(OPENCLASSBUILDROOT)/
$(OPENCLASSBUILDTOS).bin

The current working directory.

This variable is not
used by z/OS Makefile. Libraries
are always built in the current
working directory.

OBJECT_MODE Specifies whether you are
building 32-bit or 64-bit objects.

64-bit is not supported
for this release of IOC.

32-bit

MAKE
Should be set to the

directory where GNU Make was
installed.

34 IOC Library User’s Guide

Environment Variable Description Default Value When Undefined

OUTPUTDIR
The library where

created *MODULE objects are
placed.

IOC Source Directory Hierarchy and Installation Targets

In the standard installation of z/OS C/C++ feature, you can find the IBM
Open Class source tree in the HFS directory /usr/lpp/ioclib/source.

In the standard installation of VisualAge C++, you can find the IBM Open
Class source tree in the /usr/vacpp/iocsrc directory. In the following tables that
describe the directory hierarchy and installation targets, the top level IOC source
directory is $(top_srcdir).

In the standard installation of iSeries, you can find the IBM Open Class
source tree in the IFS directory,
/QOpenSys/QIBM/ProdData/C++Compiler/source/ioc. In the following tables that
describe the directory hierarchy and installation targets, the top level IOC source
directory is $(top_srcdir).

Non-Graphical Libraries

Library Description Directory Target Library File Name

Core/Base Services such as
multithreading, resource
locking, object streaming,
internationalization support,
and file system access.

$(top_srcdir)/core core
libvacbase5.a

Collection An alternative collection
library to the ANSI
Standard Template Library.
It supports notification and
streaming.

$(top_srcdir)/collect collect
libvaccl5.a

Test Framework A framework for creating
and running test cases.

$(top_srcdir)/testfw testfw
libvactestfw5.a

File I/O Stream I/O stream support for files. $(top_srcdir)/fstream fstream
libvacfstrm5.a

Note: All IOC source on iSeries is built into a single source program called
QYPROC510.

Note: IOC source on z/OS is built into two libraries:

v libioc - contains core, test framework, and file I/O Stream libraries

v libcl - contains Collection Class library

Import and Static Libraries for the AIX

The following libraries do not have any targets; they are generated
automatically by invoking any of the above targets:

Library Library File Name

Import Library libioc.a

Static non-GUI Library libiocns.a

Chapter 1. IBM Open Class Overview 35

Library Library File Name

Static Collection Library libiocclns.a

Build with the Batch Compiler
To build a debuggable IOC library with the batch compiler, call make with the
master makefile, called Makefile. For example, the following command creates the
Core library in the output tree:
make -f /usr/vacpp/iocsrc/Makefile core

If you do not supply a target, the default behavior is to rebuild the entire IOC library.

To build a debuggable IOC library with the compiler on z/OS, use the
following command:
gnumake -f /usr/lpp/ioclib/source/Makefile

To build a debuggable IOC library with the batch compiler on the iSeries, the
command is gmake (rather than make), and the path to the initial ’Makefile’ is:
STRQSH export MAKE=/usr/bin/gmake

Example of Building an IOC Library

For example, if you want to create a debuggable IOC library from an iSeries
session, enter the following commands (starting from a CL command entry screen):

v STRQSH export MAKE=/usr/bin/gmake

v export OPENCLASSBUILDTOS=os4

v export OUTPUTDIR=iocout system ’crtlib iocout’

v gmake -f /QOpenSys/QIBM/ProdData/C++Compiler/source/ioc/Makefile

These commands create all the IOC module objects in library ’iocout’. The ’export’
commands sets environment variables. The ’system’ command issues a CL
command from within the QSH.

After building the IOC service program QYPPOC510 in your library, you can tell the
binder to use your new service program by specifying the BNDSRVPGM parameter
of the CRTPGM CL command. Since the binder already has a list of exports for
IOC classes (from the QYPPOC510 supplied in library QSYS), the binder warns of
duplicate entries. You should suppress warnings, and allow duplicates on the
CRTPGM CL command. For example, to create program ’TEST’ in library ’IOCOUT’
specify:
CRTPGM PGM(IOCOUT/TEST)
BNDSRVPGM(IOCOUT/QYPPOC510)
OPTION(*NOWARN *DUPPROC *DUPVAR)

Note: You can build the IOC library for other platforms by setting the value of
OPENCLASSBUILDTOS appropriately.

Build Messages

When building the IOC libraries, you might encounter some Duplicated Symbol
warnings. These warnings are normal and can be safely ignored.

The message catalog cannot be rebuilt.

36 IOC Library User’s Guide

AIX4.3 Considerations

AIX4.3 supports two object modes: 32-bit and 64-bit. You can build only the
non-graphical IOC libraries using either object mode. To compile the IOC
non-graphical libraries using the 64-bit object mode, set the OBJECT_MODE
environment variable to 64 (for example: export OBJECT_MODE=64).

AIX4.3 also supports two versions of Motif: 1.2 and 2.1. However, the IOC graphical
libraries support only Motif 1.2. The IOC graphical libraries require the
X11.compat.adt.Motif12 fileset to get the proper headers and import libraries.

“Chapter 1. IBM Open Class Overview” on page 1

“Compile Open Class Applications” on page 28

Work with the IBM Open Class Samples
z/OS C/C++ feature ships samples that demonstrate the use of the IBM Open
Class. You can use the samples to learn the IBM Open Class by example. The
samples can show you how to properly use a class within the context of an
application. You can also use the samples as a starting-point for an application you
want to develop. Find a sample that closely resembles your desired application, and
add or revise code.

Copy Samples

To compile any sample, you must create a copy in a directory that you have
access to. For instance, enter the following commands in a command shell to copy
the IBM Open Class sample called “animals”:

v Go to your userid’s top directory:
cd x

v Create a directory to store the sample:
mkdir -p samples/ioc/animals
cd samples/ioc/animals

v Recursively copy all the files (including sub-directories) to the destination
directory:
cp -r /usr/vacpp/samples/ioc/animals/* .

v If you wish to modify the sample, run the change mode command:
chmod +w *

Build the Samples
Samples are shipped in a pre-built state. They are ready to run. All samples are
built in 32-bit mode.

All samples contain a makefile, which uses the batch compiler.

You can build the Core samples, the ones that do not contain User Interface or 2D
Graphics classes, in 64-bit mode. The appropriate environment variable or compiler
option must be used to build these samples in 64-bit mode. See the topic Build
64-Bit Enabled Applications for more information.

z/OS IOC does not support 64-bit mode in this release.

Chapter 1. IBM Open Class Overview 37

The samples are built in optimized mode. You can build the samples in debug or
static mode by:

v using the appropriate compiler options

v modifying the makefile provided with the samples (common.mak)

The following platform-independent samples use a combination of Application
Support Classes and Standard Template Library Classes:

v intl/transcod

v testfw

In addition, the following z/OS samples use a combination of Application
Support Classes and USL I/O Streaming classes:

v clb3acon

v clb3acv1

v clb3acv2

v clb3adtf

v clb3adti

v clb3aist

v clb3amac

v clb3anew

v clb3aope

v clb3arep

v clb3asad

v clb3asio

v clb3asrc

v clb3asst

v clb3ast1

v clb3ast2

v clb3ast3

v clb3asub

v clb3atim

v clb3atmp

v clb3atrc

v clb3atst

The following samples use Collection Classes or Standard Template Library
Classes:

v animals

v dskusage

v evenodd

v expr

v filesys

v graph

v intkyset

v letterdq

v parcel

38 IOC Library User’s Guide

v planets

v pushpop

v sumup

v transtab

v wordbag

v wordseq

If you want these samples to use the Standard Template Library Classes, define
__USE_STL when building the samples.

The LANG environment variable must be set to build the samples. This value is
used to locate the resource and help files associated with the sample. If you receive
build errors when compiling the samples, make sure that your LANG environment
variable is correct and that the subdirectory corresponding to the value you are
using exists in the sample’s directory. For example, the English resource and help
files are found in the en_US subdirectory for each sample and the LANG
environment variable must be set to en_US respectively.

The LANG environment variable is not needed for z/OS. The samples are
only shipped in English, and the message catalog for the samples will be built from
the en_US subdirectory for each sample.

Samples on z/OS are shipped in a HFS directory ’/usr/lpp/ioclib/sample’.
Within this directory are several subdirectories, one for each sample. There is a top
level makefile located in ’/usr/lpp/ioclib/sample’. Invoking this makefile will build all
samples in all subdirectories. Each sample subdirectory also contains a makefile.
Invoking one of these individual makefiles will build the sample specific to that
subdirectory.

Samples on the iSeries are shipped in the IFS directory
’/QOpenSys/QIBM/ProdData/C++Compiler/samples/ioc’. Within this directory are
several subdirectories, one for each sample. Each sample subdirectory contains a
makefile and a CL source member which can be used to build the program object.
Only source code is shipped on the iSeries. You must build all necessary objects.

To build using CL, copy the CL source from IFS into a Data Management(DM)
source physical file. In the example below, the ’animals’ sample is created. To do
this, create an IFS directory ’/animals’ to hold the message catalogue used by the
’animals’ program and a library ’animals’ to hold the module and program objects of
the sample.
MKDIR DIR('/animals') CHGCURDIR DIR('/animals')
crtlib animals chgcurlib animals
CRTSRCPF FILE(QCLSRC) CPYFRMSTMF
FROMSTMF('/QOpenSys/QIBM/ProdData/C++Compiler/samples/ioc/anim
als/animals.clle') TOMBR('/QSYS.LIB/ANIMALS.LIB/QCLSRC.FILE/ANIMALS.MBR')
MBROPT(*REPLACE)
CRTBNDCL PGM(ANIMALS2) SRCFILE(*CURLIB/QCLSRC) SRCMBR(ANIMALS)
call PGM(*CURLIB/animals2)
call PGM(*CURLIB/animals)

The samples are built using English resources. You can rebuild them in the
other supported languages by installing the appropriate filesets, setting the LANG
environment variable, and rebuilding the sample.

Chapter 1. IBM Open Class Overview 39

Build ja_JP Samples
Sample resources are not shipped for ja_JP. You can build these resources and
rebuild the sample by following these steps:

1. Install the language filesets for Ja_JP sample resources.

2. Copy the sample to a working directory (as described above in “Copy
Samples”).

3. Change to the sample’s working directory and create a ja_JP subdirectory.

4. Copy all files from the sample’s Ja_JP subdirectory to the ja_JP subdirectory.

5. Change to the ja_JP subdirectory and run the following command on each file
(where filename is the name of the file and outfilename is the name of the
output file):
iconv -f IBM-932 -t IBM-eucJP filename > outfilename

6. Set the LANG environment variable as follows:
export LANG=ja_JP

7. Rebuild the sample.

Build UTF-8 Samples
Sample resources are not shipped for the UTF-8 locales of EN_US, JA_JP or
ZH_CN. You can build these resources and rebuild the sample by following these
steps:

1. Copy a sample to a working directory (as described above in “Copy Samples”).

2. Change to the sample’s working directory and create an EN_US subdirectory.

3. Copy all files from the sample’s en_US subdirectory to the EN_US subdirectory.

4. Change to the EN_US subdirectory and run the following command on each file
(where filename is the name of the file and outfilename is the name of the
output file):
iconv -f ISO8859-1 -t UTF-8 filename > outfilename

5. Set the LANG environment variable as follows:
export LANG=EN_US

6. Rebuild the sample.

Use the same procedure to build the samples for the JA_JP and ZH_CN locales
with the following iconv commands:

v For the JA_JP locale use this command:
iconv -f IBM-932 -t UTF-8 filename > outfilename

v For the ZH_CN locale use this command:
iconv -f IBM-eucCN -t UTF-8 filename > outfilename

Execute a Sample
We recommended that you change to the sample’s directory when running the
sample. Some of the samples look for help or data files in their current working
directory.

“Chapter 1. IBM Open Class Overview” on page 1
“IBM Open Class Applications” on page 18

“Build a 64-Bit Enabled Application” on page 32

40 IOC Library User’s Guide

Obsolete or Ignored Member Functions
The following sections define obsolete and ignored functions and explain how to
use these functions in the IBM Open Class. To develop portable applications, you
should be aware of these areas.

The IBM Open Class constantly evolves to improve quality and design. As a result,
some functions and classes become obsolete or ignored. A set of macros identifies
these obsolete functions and classes so you can migrate to replacements.

You can find these macros in the icomdefs.h header file. One macro conditionally
defines the obsolete level for the current version of the library by the platform you
are using. Another set of macros defines the obsolete level for previous versions.
The following excerpt from icomdefs.h defines the first obsolete level as 310:
#define IC_OBSOLETE_1 310
#define IC_OBSOLETE_2 400
#define IC_OBSOLETE_3 410
#define IC_OBSOLETE_4 500
#define IC_OBSOLETE_5 510

// ...

// ----------------------------- Obsolete Levels ------------------------------

// ...

#ifndef IC_OBSOLETE
#ifdef IC_WIN

#define IC_OBSOLETE 400
#endif

#ifdef IC_PM
#define IC_OBSOLETE 400

#endif

#ifdef IC_AIX
#define IC_OBSOLETE 400

#endif

#ifdef IC_400
#define IC_OBSOLETE 310

#endif

#ifdef IC_MVS
#define IC_OBSOLETE 310

#endif

#ifdef IC_IA64
#define IC_OBSOLETE 400

#endif
#endif

An obsolete interface is then wrapped as follows:
#if (IC_OBSOLETE <= IC_OBSOLETE_1)

// An obsolete interface
#endif // IC_OBSOLETE

Notice that IC_OBSOLETE is conditionally defined in icomdefs.h so that you you
can set its value. You can easily identify the obsolete interfaces you are currently
using by defining IC_OBSOLETE to be greater than any of the obsolete levels. For
example, if you define IC_OBSOLETE to be 550, you will receive compile errors for
each obsolete function used in your code.

Chapter 1. IBM Open Class Overview 41

There are several important guidelines regarding obsolete functions:

v Usually the implementation of an obsolete function calls the function that has
replaced it.

v Typically, we remove the interface obsoleted in a version of library in the next
major release of the library. We do not document obsoleted interfaces in the main
body of the reference manual. Instead, they are documented in a section which
identifies obsolete interface and replacement classes and functions if they are
available.

Even if you get no error messages, code compiled with one of these macros
defined cannot be run because the generated code does not match any shipped
dynamic or static libraries on your system. These macros are only provided to
assist you in identifying obsoleted functions and code must be recompiled without
any of these macros defined to be executable.

Ignored Functions
Ignored functions are functions that cannot be implemented on a particular platform
but you still can call from your program.

Generally, these functions are implemented to do nothing. Although their missing
functionality should not be critical to the running of most programs, you should
examine how you use ignored functions for each platform on which you develop.

You can identify the functions ignored on a specific platform using the following
macros. Compiling with these macros will generate a compiler error for each
ignored function you use:

Symbol Platform

IC_PM_FLAGNOP

IC_WIN_FLAGNOP

IC_MOTIF_FLAGNOP

IC_PMWIN_FLAGNOP

IC_MOTIFPM_FLAGNOP

IC_MOTIFWIN_FLAGNOP

IC_MVS_FLAGNOP

IC_400_FLAGNOP

By defining one of these macros, you can identify the functions that have little to no
effect on the corresponding platforms. You can check for ignored functions on any
platform; you are not limited to only the platform on which you compile.

For example, IFont::setFontShear() is an ignored function under Motif. The following
is an excerpt from ifont.hpp:
#ifndef IC_MOTIF_FLAGNOP
virtual IFont
&setFontShear(const IPoint& point,

const IPresSpaceHandle& presSpaceHandle = IPresSpaceHandle());
#endif

42 IOC Library User’s Guide

By compiling your with IC_MOTIF_FLAGNOP, IC_MOTIFPM_FLAGNOP, or
IC_MOTIFWIN_FLAGNOP defined, the compiler will identify the calls you make to
IFont::setFontShear() and any other functions ignored on AIX.

You receive error messages from the compiler for each ignored function used.

Even if you get no error messages, code compiled with one of these macros
defined cannot be run because the generated code does not match any shipped
dynamic or static libraries on your system. These macros are only provided to
assist you in identifying ignored functions and code must be recompiled without any
of these macros defined to be executable.

“Chapter 1. IBM Open Class Overview” on page 1

“Compile Open Class Applications” on page 28

IBM Open Class Libraries, Headers, and Conventions
Naming Files
Source files provided by the Open Class Library begin with the letter “i”, for IBM,
and use lowercase letters.

The following table lists the file names, file extensions, and a brief description.

File Name Description

ixxxxxxx.c Template function source code for the class
xxxxxxx.

ixxxxxxx.cpp Source code that defines the class xxxxxxx.

ixxxxxxx.hpp Interface for the class xxxxxxx. The collection
classes use the .h extension instead of the
.hpp extension for their class interfaces.

Dummy header files with .hpp
extensions are provided for collection classes
for compatability reasons. Each dummy
header ixxxxxxx.hpp header file for a
collection calss includes its corresponding
ixxxxxxx.h header file.

ixxxxxxx.h Constant definitions for the class xxxxxxx.

ixxxxxxx.inl Inline functions for the class xxxxxxx

All IBM Open Class Libraries are multithreaded and thread-safe.

Shared Libraries and Other Files for AIX

The following table describes libraries and other files provided by the Open
Class Library for AIX:

Description VisualAge C++ V5.0 VisualAge C++
V4.0

IBM C/C++
Compilers V3.6

C Set++ for AIX,
V3.1

64-Bit Enabled?

Shared library for
the base library
classes.

libvacbase5.a Yes libvacbase.a libcxxbase.a libibmcls.a

Chapter 1. IBM Open Class Overview 43

Shared library for
the Test classes.

libvactestfw5.a Yes libvactestfw.a libcxxtestfw.a not available

Shared library for
the File I/O
Stream classes.

libvacfstrm5.a Yes libvacfstrm.a libcxxfstrm.a not available

Shared library for
the Collection
classes.

libvaccl5.a Yes libvacbase.a libcxxbase.a libibmcls.a

Shared library for
the User Interface
classes

libvacui5.a No libvacui.a libcxxui.a libibmuis.a

Shared library for
the 2D Graphics
classes

libvacgraph2d5.a No libvacgraph2d.a libcxxgraph2d.a not available

Message catalog
which contain the
Exception
messages for the
IBM Open Class

ibmvaccl.cat not applicable ibmvaccl.cat libcxxcl.cat ibmcl.cat

Contains the
resources used
with toolbars and
other IBM Open
Class Library
classes

libvacocres.o not applicable libvacocres.o libcxxocres.o not available

Import Libraries for AIX

The following table describes import libraries needed for an application to be
built using IBM Open Class. You must link to these import libraries when building
applications:

Description VisualAge C++ V5.0 VisualAge C++
V4.0

IBM C/C++
Compilers V3.6

C Set++ for AIX,
V3.1

64-Bit
Enabled?

Import library to
be used when
dynamically
linking to the IBM
Open Class.

libioc.a not applicable not available not available not available

Static library to be
used when
statically linking to
the IBM Open
Class Base
classes.

libiocns.a Yes libvacbasens.a
libvactestfwns.a
libvacfstrmns.a

libcxxbasens.a
libcxxtestfwns.a
libcxxfstrmns.a

libibmcls.a

Static library to be
used when
statically linking to
the IBM
Collection
classes.

libiocclns.a Yes libvacbasens.a libcxxbasens.a libibmcls.a

Static library to be
used when
statically linking to
the IBM Open
Class User
Interface and 2D
Graphics classes.

libiocuins.a No libvacuins.a
libvacgraph2dns.a

libcxxuins.a
libcxxgraph2dns.a

libibmuis.a

Naming Classes and Members
The following rules were used for naming the Open Class Library classes and
members:

v Class names begin with a capital letter.

v Global class names begin with the letter “I,” as in ICurrentNonGUIApplication.

44 IOC Library User’s Guide

v Member names, including member functions, member data, and enumerations,
begin with lowercase letters, as in the autoSize data member.

Returning Values and Passing Function Arguments
To follow the Open Class Library conventions, pass objects by reference preferable
as const references, and return objects by value rather than by reference. Pass
objects by pointer rather than by reference when you want a parameter to use its
default or when it is valid to specify “no object.”

Function arguments are passed in the following ways:

v Enumerations and built-in types (integers or doubles, for example) are passed in
by value.

v Objects are passed by reference. If the argument is not modified by the function,
it is passed as a const reference.

v Optional objects are passed by pointer. This allows a 0 pointer to signify that no
object is being passed.

v Strings are passed as a constant IText reference (const IText &) for non-UI
classes. This enables you to pass any character (ASCII or Unicode) string.

“Thread Safety and the IBM Open Class Library” on page 48

Chapter 1. IBM Open Class Overview 45

46 IOC Library User’s Guide

Chapter 2. Application Control

Open Class Threading Model
A typical application is a single-threaded process. The path of execution enters the
main() function, runs the application and library methods, and terminates as it exits
main(). Within a process, the thread runs your code.

However, many threads may execute simultaneously within a single process,
independent to each other and to the main thread. Processes running more than
one thread are multi-threaded. Multiple processes running concurrently may also be
multi-threaded.

The operating systems that support IBM Open Class are themselves multi-threaded.
Therefore multi-threaded applications can take advantage of hardware platforms
that have multiple CPU devices. Threaded Open Class applications can achieve
tremendous performance gains over the default, single-threaded, applications.

You must apply multiple threads programmatically. Each thread can run your
application’s global methods and objects’ methods. Sometimes two or more threads
are calling methods on the same object simultaneously. Several threads may
simultaneously call the same method or multiple methods that access the same
data belonging to the application object. When multiple threads contend for access
to the same data, you must synchronize, or serialize, their access.

To protect application data from simultaneous access by multiple threads of
execution, the Open Class library provides mutex locks, referred to as resources,
and event locks, referred to as conditions. Open Class classes and/or member
functions that are themselves protected from simultaneous access to multiple
threads of execution are thread-safe. Open Class classes and member functions
are thread-safe unless documented otherwise.

Open Class application objects typically use thread objects; unlike objects in other
threading models, they do not derive from a thread object or implement a threading
interface.

GUI and Non-GUI Threads
Open Class has two concrete base thread classes:

v INonGUIThread

v IThread

INonGUIThread is the basic thread class; however, IThread, which is derived from
INonGUIThread, offers additional threaded behavior for graphical user interface
situations. To start a thread within a process, you must explicitly use an object of
either INonGUIThread or IThread.

The IThread class is not supported on OS/400.

The IThread class is not supported in Version 5 of IBM Open Class Library
on z/OS environment. Since the IThread class is supported in Version 3 of IBM
Open Class Library, this code can be accessed using TARGET compiler option in
z/OS environment.

© Copyright IBM Corp. 1996, 2001 47

These two thread classes have no application state of their own. They share access
to the application objects’ data.

To run a multithreaded environment in z/OS, the z/OS UNIX kernel must be
available and active.

Only some types of jobs (processes) allow multiple threads to be active.
Currently, the list of jobs that allow multiple threads include, autostart jobs, prestart
jobs, batch jobs submitted from job schedule entries and jobs started using the
Submit Job (SBMJOB) and Batch Job (BCHJOB) commands.

“Behavior of IBM Open Class Threads” on page 49
“Resources and Conditions” on page 50
“Thread-Specific Data” on page 51
“Thread Scheduling” on page 51

“Start a Thread” on page 53

Thread Safety and the IBM Open Class Library
A thread is an independent, lightweight control activity within a computer process. In
a multithreaded application, many threads typically exist within a single process and
all share the same address space.

Thread safety for an application or function is the ability of that application or
function to run in a multithreaded environment. An application or function that is not
thread safe is not guaranteed to run correctly in a multithreaded environment, even
if it does not itself directly employ multithreading. However, a thread safe application
or function does not relieve programmers of the responsibility to properly manage
their own resources.

Why Thread Safety?
Global instances of IBM Open Class Library classes often result in global data
structures that are shared among all threads in a process. In a multithreaded
environment, unrestricted access to these global data structures can result in
unpredictable behavior. To avoid problems, you need to ensure that access to
global data structures or resources is serialized so that no two threads can access
the resources simultaneously. This is accomplished by protecting the resources
under a lock.

Levels of Thread Safety
From an application viewpoint, there are three levels of thread safety:

v Level 0: No safety
It is only safe to instantiate a given class on a single thread.

v Level 1: Class safety
It is safe to instantiate a given class on multiple threads. This implies that
constructors are safe, global class data is implicitly serialized, and instances are
safe if they are not shared across threads. With Level 1 thread safety,
programmers are required to define the critical regions within their programs.
While it is generally safe to instantiate a given class on different threads, sharing
a specific object across threads requires explicit program serialization and
coordination.
As a comparison, consider fundamental types such as int and float . For these

48 IOC Library User’s Guide

types, it is safe to define different variables of a given type on multiple threads,
but sharing a given variable across threads also requires explicit programmer
serialization and coordination.

v Level 2: Instance safety
It is safe to use a given instance on separate threads. This implies Level 1
thread safety with the added feature that instance data is implicitly serialized.
Explicit programmer serialization or coordination is not required.

In general, the IBM Open Class Library is at Level 1 thread safety. The notable
exceptions are the USL I/O Stream Library and Collection Class Library. The USL
I/O Stream Library is at Level 2 thread safety. Simultaneous use of cout from
multiple threads can be accomplished without programmer serialization. The
Collection Class Library, while at Level 1 thread safety, provides an assist for
explicit programmer serialization in the form of a Guard class.

“Open Class Threading Model” on page 47
“Thread Safety and the Collection Classes” on page 350

“Insure Thread Safety with Guard Objects” on page 351

Behavior of IBM Open Class Threads
The behavior of a multi-threaded process is non-deterministic; you do not know the
following:

v When a thread may run a member function.

v How many threads may be running the same member function concurrently.

v How many threads may be concurrently running member functions that access
the same data.

When C++ data is only accessible through member functions, synchronizing the
access to those member functions synchronizes access to the data. To ensure that
no more than one-thread-at-a-time is modifying the same data or that data is not
being read by one thread while another is modifying it, you can either do the
following:

v Bracket the accessing code with a static resource lock that can only be owned by
a single thread at a time.

v Protect the accessing code with a condition that blocks all threads from the
accessing code until that condition triggers either one or all the waiting threads to
access the code.

The Thread Currently Running an Application Object’s Member Function
For non-GUI applications, call INonGUIThread::current to obtain a reference to the
ICurrentNonGUIThread object that represents the currently executing thread.

The ICurrentNonGUIThread class represents the current thread of execution for a
non-GUI application. The IBM Open Class allows only a single object of this class.

“Open Class Threading Model” on page 47
“Resources and Conditions” on page 50
“Thread-Specific Data” on page 51
“Thread Scheduling” on page 51

Chapter 2. Application Control 49

“Start a Thread” on page 53

Resources and Conditions
Resource Locking
An IResource object is a lock you can use to serialize thread access to code.
Typically, a class declares a single static IResource object that is shared by all the
objects of this class. IResource is an abstract base class. This class has two
derived classes:

v IPrivateResource (synchronizing within the same process)

v ISharedResource (synchronizing among concurrent processes)

An application object must have a lock in every public and protected function that
accesses the same data. You would not need to put a lock in private functions, as
long as all the public/protected functions which call that private function have locks
in their body that precede the call. The following function is structured for the first
thread entering the function’s body to lock the static resource, thereby blocking any
other threads from calling this code until the owning thread exits this function:
class myClass
{

IPrivateResource myLock;
myClass::myLockedFunction()
{

IResourceLock mySetLock(myLock);

// locking for the remainder of
// myLockedFunction occurs here

// ...
// single-threaded access assured for the remainder
// of myLockedFunction

}
// mySetLock is deleted and myLock is unlocked when
// myLockedFunction goes out of scope

}

The IResourceLock object implicitly calls the functions IPrivateResource::lock and
IPrivateResource::unlock. Open Class automatically calls the IResourceLock
destructor if either the thread exits the bracketing function or if an exception is
thrown. IResourceLock saves you from explicitly calling its destructor or from using
try/catch blocks for exceptions which depend upon destroying the IResourceLock
object.

Event Monitoring
Class ICondition monitors for an event. An ICondition object blocks all threads from
access to the subsequent code. The ICondition object can signal the first waiting
thread to run the protected code, or it can broadcast to unblock all of the waiting
threads.

“Open Class Threading Model” on page 47
“Behavior of IBM Open Class Threads” on page 49
“Thread-Specific Data” on page 51
“Thread Scheduling” on page 51

50 IOC Library User’s Guide

“Start a Thread” on page 53

Thread-Specific Data
Per-thread data never needs to be synchronized. You can create thread-specific
data (per-thread instance data) using the following steps:

1. Derive your application object from IThreadFn.

2. Create the data variables you want within your derived class.

3. Implement the virtual IThreadFn::run() method to use that data.

Application objects derived from IThreadFn must also use an INonGUIThread object
to start a thread’s execution.

Open Class provides another technique for creating per-thread data. You can use
the template class IThreadLocalStorage to create per-thread global variables that
may be needed by a library or application. These variables serve as thread-specific
global pointers. An IThreadLocalStorage object cannot be created by operator
new(), nor can be declared by any object or within the main() function. An
IThreadLocalStorage object must be declared globally.

An IThreadLocalStorage object can access a single type of data, which will have an
initial value of 0. If you want many types of data referenced by an
IThreadLocalStorage object, create a helper class that contains all the desired data
types, and then pass it to the IThreadLocalStorage template construction. For
optimal performance, do not create a separate IThreadLocalStorage object for every
type of data you want this thread to store.

In previous versions of Open Class, IThread handled thread-local storage. However,
IThreadLocalStorage improves the implementation.

“Behavior of IBM Open Class Threads” on page 49
“Resources and Conditions” on page 50
“Open Class Threading Model” on page 47
“Thread Scheduling”

“Start a Thread” on page 53

Thread Scheduling
Often an application creates more threads than the hardware has processors. You
can designate some threads to be run before considering running other threads by
assigning relative priorities to the threads; this is how you can schedule the
multi-threaded execution. In previous versions of Open Class, thread scheduling
was based on the OS/2 model (which is still supported). However, new scheduling
application code is portable.

Open Class prioritizes execution using a priority class and a priority level. In the
OS/2 model, both processes and threads had their own priority classes and their
own priority levels. Priority classes were specified with an enum, and priority levels
were specified with integers (available in the OS/2 system’s scheduling).

Scheduling in this release uses the Windows NT model: processes can only have a
priority class, and threads can only have a priority level. Thus, the process

Chapter 2. Application Control 51

automatically sets the priority class for all of its threads, but each thread can
set/reset its own priority within the process. Both process priorities and thread
priorities are specified as enumerated types.

Process scheduling uses the following enum:

v enum INonGUIApplication::EProcessPriority

Thread scheduling uses the following enum:

v enum INonGUIThread::EThreadPriority

INonGUIThread::setThreadPriority is supported but ignored in z/OS.

“Open Class Threading Model” on page 47
“Behavior of IBM Open Class Threads” on page 49
“Resources and Conditions” on page 50
“Thread-Specific Data” on page 51

“Start a Thread” on page 53

Multi-Processing Interface
Just as a user can interactively launch additional processes while one process is
already running, a process itself can programmatically spawn secondary processes.
IBM Open Class’s process API is both object-oriented and open, allowing you to
spawn parallel processes on various platforms with the same source code.

These components constitute the process API:

Component Description

IExternalProcess Use to spawn a new process

INonGUIApplication Use to control the external process

ICurrentNonGUIApplication Use to access the current active process

IProcessId Use to identify a process

INonGUIApplication
::EProcessPriority

Use this enum to set the priority for running
a process relative to other concurrent
processes

Each process can start multiple threads to run within it. Therefore, an Open Class
application can be both multi-process and multi-threaded.

Processes are referred to as jobs on the iSeries.

“Open Class Threading Model” on page 47

“Start a Thread” on page 53

52 IOC Library User’s Guide

Start a Thread
To start a thread within a process, use INonGUIThread to represent the thread.
Pass the code you want the thread to run to either the thread’s constructor or to its
start() method. The code to run can be a C function, a member function of a C++
class, or the run function of a class derived from IThreadFn. C functions must be
declared to be of type _Optlink or type _System (_Optlink and _System functions
return void).

_Optlink and _System are not needed, and if used, are defined to
nothing.

These examples construct an INonGUIThread object, passing it a user-defined
function, mythreadedFunction():
void _Optlink myThreadedFunction()
{

// Your code, to be executed in
// the new thread, goes here.

}

The following examples illustrate how to launch a thread to run your user-defined
function:

v Pass the code you want threaded to the constructor of INonGUIThread. The
thread object will create a new thread, executing the code on that thread. You do
not call the thread object’s start() function; the constructor will call that function
for you.
int main(int argc, char *argv[])
{

INonGUIThread myThread(myThreadedFunction);
// ...

}

v Call the default constructor for INonGUIThread; pass the code that you want
threaded to start().
int main(int argc, char *argv[])
{

INonGUIThread myThread;
myThread.start(myThreadedFunction);
// ...

}

You can also provide the code to run on the new thread by overriding the virtual
run() function of a class dervied from IThreadFn. The following example code
demonstrates the use of the INonGUIThread class. It creates two classes derived
from IThreadFn. Each of these classes overrides the virtual IThreadFn::run()
member function. The main function creates a thread for each of these classes,
then starts both threads:
#include <ingthrd.hpp>
#include <iostream.h>

int done_1 = 0;
int done_2 = 0;

class TestFn : public IThreadFn
{
public:

virtual void run()
{

cout << “First line, TestFn” << endl;

Chapter 2. Application Control 53

INonGUIThread::current().sleep(10);
cout << “Second line, TestFn” << endl;
INonGUIThread::current().sleep(10);
cout << “Third line, TestFn” << endl;
INonGUIThread::current().sleep(10);
cout << “Fourth line, TestFn” << endl;
INonGUIThread::current().sleep(10);
cout << “Fifth line, TestFn” << endl;
done_1 = 1;

}
};

class TestFn2 : public IThreadFn
{
public:

virtual void run()
{

cout << “First line, TestFn2” << endl;
cout << “Second line, TestFn2” << endl;
cout << “Third line, TestFn2” << endl;
cout << “Fourth line, TestFn2” << endl;
cout << “Fifth line, TestFn2” << endl;
done_2 = 1;

}
};

int main(int argc, char *argv[])
{

TestFn *aThreadObj1 = new TestFn;
TestFn2 *aThreadObj2 = new TestFn2;

INonGUIThread myThread1;
INonGUIThread myThread2;

myThread1.start(aThreadObj1);
myThread2.start(aThreadObj2);

while (1)
{

if (done_1 && done_2)
break;

}
return 0;

}

The following is the output of the above code:
First line, TestFn
First line, TestFn2
Second line, TestFn2
Third line, TestFn2
Fourth line, TestFn2
Fifth line, TestFn2
Second line, TestFn
Third line, TestFn
Fourth line, TestFn
Fifth line, TestFn

If you want a thread to run a C function that has arguments, choose from the
following types:

v _Optlink functions that take a void* argument type

v _System functions that take an unsigned long argument type

To run in a multi-threaded environment, the z/OS UNIX kernel must be
available and active.

54 IOC Library User’s Guide

“Open Class Threading Model” on page 47
“Behavior of IBM Open Class Threads” on page 49
“Resources and Conditions” on page 50
“Thread-Specific Data” on page 51
“Thread Scheduling” on page 51
“Multi-Processing Interface” on page 52

Reference Counting
Reference counting is the technique of keeping track of how many pointers refer to
a given object. This technique helps prevent memory errors. For example, suppose
you have several pointers referring to a given object. If you delete all those pointers
and forget to delete the object, your program will leak memory. Reference counting
alleviates this by deleting an object automatically when no pointers refer to it.

A reference counted object is an object that keeps track of the number of pointers
that refer to it. This number is called the reference count. When the reference count
reaches zero, the reference counted object is automatically deleted. You create
reference counted objects with the IMRefCounted class. This class has two member
functions that change the reference count:

v addRef() increments the reference count by one

v removeRef() decrements the reference count by one

The IMRefCounted class is similar to the IRefCounted class provided by the IBM
Open Class library in the past. This version of IMRefCounted differs in two ways:

v IMRefCounted is thread safe. That is, its addRef(), removeRef(), and count()
member functions can be called from multiple threads simultaneously without
causing data corruption.

v When an IMRefCounted object is created, its initial reference count is set to 0
rather than 1, which is what IRefCounted uses. An initial count of 0 makes
IMRefCounted work much more cleanly with counted pointer classes such as
ICountedPointerTo.

Counted pointers are objects that behave like C++ pointers that you use for
reference counting. Use the ICountedPointerTo templatized class when creating
counted pointers. You can use this class for reference counting both IMRefCounted
objects and objects that do not descend from IMRefCounted.

The ICountedPointerTo class automatically calls addRef() and removeRef() on the
object to which it points. In contrast, you have to remember to call addRef() and
removeRef() yourself whenever you create and throw away a regular C++ pointer to
a reference counted object. This is a large source of potential errors. If you forget to
call removeRef(), your program will leak memory. If you forget to call addRef(), an
object might be deleted while you are using it.

When you use ICountedPointerTo for reference counting objects that do not derive
from IMRefCounted, you must follow some rules that are described in the task Use
Counted Pointers.

“Use Counted Pointers” on page 57
“Use Reference Counted Objects” on page 56

Chapter 2. Application Control 55

Use Reference Counted Objects
You cannot use the IMRefCounted class directly; you must derive a new class from
it. To enforce this, its constructors and destructor are all declared protected.

When using an IMRefCounted subclass, you can call the following public functions:

Function Description

addRef() Increments the object’s reference count by
one. Use this method when you create a
new pointer that aliases a reference counted
object.

removeRef() Decrements the object’s reference count by
one. Use this method when you are finished
using a pointer that aliases the object.

count() Returns the object’s current reference count.
This is useful when you want to implement
copy-on-write semantics, because it allows
you to find out if anyone else is using the
object.

When you are using IMRefCounted objects with raw C++ pointers, you must
remember to call addRef and removeRef at the appropriate times, as in the
following example:
class Foo : public IMRefCounted
{

// ...
};

//...

Foo *fooPtr = new Foo();

// Added a pointer, so increase the ref count
fooPtr->addRef();

// Could increase the ref count if it needs to.
functionCall(fooPtr);

// Finished using fooPtr
fooPtr->removeRef();

}

To implement copy-on-write semantics for a class, you typically use an internal
implementation object that is reference counted and copied only when needed, as
in the following example:
class Bar
{

public:
void setValue(int i);

private:
// BarImp is IMRefCounted
BarImp *fImp;

};

void Bar::setValue(int i)
{

if (fImp->count() > 1)
{

// My implementation is shared,
// so make my own private copy

56 IOC Library User’s Guide

BarImp *temp = new BarImp(*fImp);
fImp->removeRef();
fImp = temp;
fImp->addRef();

}
fImp->assign(i);

}

Deriving a Class from IMRefCounted
When deriving your own class of IMRefCounted, the only real issue is whether you
want to force clients to use your class in a reference-counted manner, or whether
you want to allow them to use the class with normal stack or heap allocation
semantics. If you want to force clients to do reference counting, make the destructor
protected. This will prevent clients from allocating your class on the stack and from
deleting heap objects of that class; they will instead have to call the removeRef()
method that it inherits from IMRefCounted.

“Reference Counting” on page 55

“Use Counted Pointers”

Use Counted Pointers
The ICountedPointerTo is the counted pointer class provided by the IBM Open
Class. The ICountedPointerTo class automatically calls addRef() and removeRef()
on the object to which it points. In contrast, you have to remember to call addRef()
and removeRef() yourself whenever you create and throw away a regular C++
pointer to a reference counted object. The following is an ICountedPointerTo
equivalent to the first example in the task Use Reference Counted Objects:
class Foo : public IMRefCounted
{

// ...
};

// ...

ICountedPointerTo<Foo> fooPtr = new Foo(); // Calls addRef()
functionCall(fooPtr);
// removeRef called automatically by fooPtr's destructor()

Implementing copy-on-write semantics for a class is easier with the
ICounterPointedTo class. The following example is equivalent to the second
example in the task Use Reference Counted Objects:
class Bar
{

public:
void setValue(int i);

private:
// BarImp is IMRefCounted
ICountedPointerTo<BarImp> fImp;

};

void Bar::setValue(int i)
{

if (fImp->count() > 1)
{

// My implementation is shared,
// so make my own private copy

Chapter 2. Application Control 57

fImp = new BarImp(*fImp);
}
fImp->assign(i);

}

The statement fImp = new BarImp(*fImp); works because ICountedPointerTo’s
assignment operator is smart enough to call removeRef and addRef on the old and
new objects that are pointed to by the ICountedPointerTo object. For details, see
the Assignment and Copying section below.

Use Reference Counting with Non-IMRefCounted Objects
Sometimes you want to use reference counting on objects of an existing class that
does not inherit from IMRefCounted. ICountedPointerTo allows you to do this easily.
ICountedPointerTo takes one of your existing classes as its template argument. If
this class does not inherit from IMRefCounted, ICountedPointerTo adds a
reference-counted wrapper around your objects to enable reference counting. For
example, the following code will still work even though Foo does not inherit from
IMRefCounted:
class Foo
{

// ...
};

// ...

// The ICountedPointerTo constructor will create a
// reference-counted wrapper around the Foo object.

ICountedPointerTo<Foo> fooPtr = new Foo();
functionCall(fooPtr);

// removeRef called automatically by fooPtr's destructor

In order for this to work, you must always use ICountedPointerTo rather than raw
C++ pointers to ensure that there is only one wrapper object for each object you
want to reference count. Because ICountedPointerTo automatically calls addRef and
removeRef for you,

ICountedPointerTo<Foo> fooPtr = new Foo();

// Create a raw, “unwrapped” pointer...
Foo *rawPtr = fooPtr.getAlias();

// This line will create a second smart pointer with its own wrapper
// around the Foo object.
ICountedPointerTo<Foo> fooPtr2 = rawPtr;

// This assignment statement will call removeRef on the original
// wrapper, which will cause the Foo object to be deleted.
fooPtr = 0;

// Since the Foo object has been deleted, this will crash
fooPtr2->function();

To do this correctly, simply omit the raw Foo* pointer and use ICountedPointerTo
throughout your code:

ICountedPointerTo<Foo> fooPtr = new Foo();

// Create a second smart pointer that uses the same wrapper.
ICountedPointerTo<Foo> fooPtr2 = fooPtr;

// Calls removeRef on the wrapper, so its count will now be 1

58 IOC Library User’s Guide

fooPtr = 0;

// The Foo object has not been deleted yet, so this will work
fooPtr2->function();

Assignment and Copying methods
All of the ICountedPointerTo constructors and assignment operators will perform
reference counting correctly. The following table describes the constructors and
assignment operators:

Constructor or Operator Description

ICountedPointerTo (AType* adopt) This constructor will “adopt” the object
passed in and will increment its reference
count. All further references to the object
should be made through the
ICountedPointerTo object; the raw pointer
that was passed in to this constructor should
be discarded.

ICountedPointerTo (const
ICountedPointerTo<AType>& share)

The copy constructor will create another
ICountedPointerTo object that aliases the
same object. It will, of course, increment the
object’s reference count by 1.

operator = (AType* adopt) Assigning a raw pointer into an
ICountedPointerTo will “adopt” the object
passed in and will increment its reference
count by 1. All further references to the
object should be made through the
ICountedPointerTo object; the raw pointer
that was passed in to this constructor should
be discarded. If this ICountedPointerTo
already pointed to an object before the
assignment took place, the old object’s
reference count will decremented by 1 and
the object will be deleted if the reference
count reaches 0.

operator = (const
ICountedPointerTo<AType>& share)

This assignment operator causes the
counted pointer to refer to the same object
as the ICountedPointerTo that is passed in.
That object’s reference count is incremented
by 1. If this ICountedPointerTo already
pointed to an object before the assignment
took place, the old object’s reference count
will decremented by 1 and the object will be
deleted if the reference count reaches zero.
This operator handles self-assignment
properly.

xICountedPointerTo() If the counted pointer refers to an object, the
destructor will decrement the object’s
reference count. If the reference count
reaches zero, the object will be deleted.

Streaming Functions
ICountedPointerTo provides streaming operators that let you stream it to and from
data streams. Writing an ICountedPointerTo to a stream does not write the pointer
itself; it writes the object to which the ICountedPointerTo points. If you stream out

Chapter 2. Application Control 59

several different counted pointers to the same object, the object will only be
streamed out the first time, and aliases to it will be streamed out after that. For
example:

IDataStream *stream =;
ICountedPointerTo<Foo> foo1 = new Foo();
ICountedPointerTo<Foo> foo2 = foo1;
foo1 >>= *stream; // Streams out the Foo object
foo2 >>= *stream; // Just streams out an alias
// ...
ICountedPointerTo<Foo> foo3, foo4;
foo3 <<= *stream; // Streams in the Foo object
foo4 <<= *stream; // Creates an alias to the same Foo object
// foo3 and foo4 now point to the same Foo object.

These streaming methods will only work if the object being pointed to inherits from
IMStreamable.

The following example demonstrates how to create and use a counted pointer, as
well as how to stream objects pointed to by counted pointers in and out of data
streams:
// Counted pointer example

#include <icntptr.hpp>
#include <istrmmod.hpp>

// IStreamModules are used with IDataStreams. They provide
// a name-space like facility to help avoid conflicts
// between the names of classes that may be written to a
// stream.

IStreamModule myModule(“myName”);

class MyDatabase : public virtual IMStreamable, public IMRefCounted
{

// All non-abstract classes deriving from IMStreamable
// must include the StreamableDeclarations and
// StreamableDefinitions macros.
StreamableDeclarationsMacro(MyDatabase);

public:
float getName(void)

{ return name; }
void setName(float data)

{ name = data; }

protected:
virtual void writeToStream(IDataStream&) const;
virtual void readFromStream(IDataStream&);

private:
float name;

};

// All subclasses of IMStreamable must override
// the writeToStream() and readFromStream()
// functions.

void MyDatabase::writeToStream(IDataStream& toWhere) const
{

name >>= toWhere;
}

void MyDatabase::readFromStream(IDataStream& fromWhere)
{

60 IOC Library User’s Guide

name <<= fromWhere;
}

// All non-abstract classes deriving from IMStreamable
// must include the StreamableDeclarations and
// StreamableDefinitions macros.

StreamableDefinitionsMacro(MyDatabase, myModule);

int main(int argc, char *argv[])
{

cout << “Create first counted pointer...” << endl;
ICountedPointerTo<MyDatabase> firstUser = new MyDatabase();

cout << “The count of the first counted pointer: ”
<< firstUser->count() << endl << endl;

cout << “Create two more counted pointers...” << endl;
ICountedPointerTo<MyDatabase> secondUser(firstUser);
ICountedPointerTo<MyDatabase> thirdUser = secondUser;

cout << “The count of the first counted pointer: ”
<< firstUser->count() << endl << endl;

cout << “Put data into object pointed to by the first counted pointer...” << endl;
firstUser->setName(123456);

cout << “Data in object pointed to by second counted pointer: ”
<< secondUser->getName() << endl << endl;

cout << “Remove third counted pointer...” << endl;
thirdUser = 0;
cout << “The count of the first counted pointer: ”

<< firstUser->count() << endl << endl;

// The remaining code demonstrates how to stream
// ICountedPointerTo ojects in and out of data
// streams.

cout << “Create memory stream...” << endl;
IDataStream *stream = IDataStream::createMemoryStream();

cout << “Stream out the MyDatabase object...” << endl;
firstUser >>= *stream;

cout << “Reset the stream...” << endl;
stream->reset();

cout << “Stream in the MyDatabase object into a fourth counted pointer...” << endl;
ICountedPointerTo<MyDatabase> fourthUser;
fourthUser <<= *stream;

cout << “Data in object pointed to by fourth counted pointer: ”
<< fourthUser->getName() << endl << endl;

cout << “The count of the first counted pointer: ”
<< firstUser->count() << endl << endl;

cout << “The count of the fourth counted pointer: ”
<< fourthUser->count() << endl << endl;

return 0;
}

Output
The following is the output of the above example:
Create first counted pointer...
The count of the first counted pointer: 1

Chapter 2. Application Control 61

Create two more counted pointers...
The count of the first counted pointer: 3

Put data into object pointed to by the first counted pointer...
Data in object pointed to by second counted pointer: 123456

Remove third counted pointer...
The count of the first counted pointer: 2

Create memory stream...
Stream out the MyDatabase object...
Reset the stream...
Stream in the MyDatabase object into a fourth counted pointer...
Data in object pointed to by fourth counted pointer: 123456

The count of the first counted pointer: 2

The count of the fourth counted pointer: 1

The above example creates three counted pointers, firstUser, secondUser, and
thirdUser, that point to the same MyDatabase object. The example then streams out
the object from firstUser and streams in that object to fourthUser. Note that
firstUser and fourthUser do not point to the same object.

Other Functions
ICountedPointerTo also provides the usual comparison operators, plus a number of
other useful functions:

Function Description

getAlias() Returns the underlying object to which this
ICountedPointerTo points. If it points to
nothing, 0 will be returned.

valid() Returns true if this ICountedPointerTo refers
to an object and false if it does not.

validate() This method is essentially an assertion that
the ICountedPointerTo is valid. If it is not, an
IInvalidRequest exception will be thrown with
its error code set to
IC_NULL_IREFERENCE.

count() Returns the current reference count of the
object to which this pointer refers. If there is
no object, it returns 0.

copyPointer() This global function can be used to do a
polymorphic copy of an IMStreamable object
that is pointed to by an ICountedPointerTo. If
the object’s class does not inherit from
IMStreamable, you will get a compile-time
error. If there is no object being pointed to,
this function will return 0.

“Reference Counting” on page 55

“Use Reference Counted Objects” on page 56

62 IOC Library User’s Guide

Event Notification
You use the Notification classes to enable an object to be notified by other objects
of any changes which it needs to know about. For example, in a compound
document application which uses the model/view/presenter design, whenever the
state of the data in a model changes, any views opened on the model that the
change affects need to be informed so that the views can present the change to the
user.

Your model should notify the view when the model’s data is modified so that the
view can redraw itself to reflect the change.

An object which issues notification to other objects of changes in its state is referred
to as a notifier. The objects which receive such change notifications are referred to
as observers. To become an observer, an object must register with the object
whose state it wishes to observe. (To register an observer, call its
IObserver::handleNotificationsFor member function.) Once registered, when that
object is modified, it issues notification to the registered observer objects, passing a
notification event.

Before you delete an observer object you must unregister with the notifier. (To
unregister an observer, call its IObserver::stopHandlingNotificationsFor member
function.)

Chapter 2. Application Control 63

Any application object can use a notifier to notify observers of particular events or
changes in its state.

In this example, the user interface can update the display whenever the model
completes a recalculation requested by the user.

For other examples, a stock market ticker-tape component that constantly monitors
stock reports needs to inform its associated view of changes to the incoming data,
while a clock component needs to keep its display constantly updated.

Notification Solutions
The notification classes implement three generic solutions:

v Synchronizing the states of two related objects

v Filtering notifications in an application where one source can generate many
events, such as might happen with a feature-rich user interface window

v Using asynchronous notification to eliminate one event’s blocking another, such
as a print or save request preventing further data entry

IBM Open Class extends its notification services in two important ways:

v It offers asynchronous, in addition to synchronous, notification

v It provides a filtering mechanism so that the client object can specify what types
of notification to receive

These enhancements lower the risk of application deadlocks, provide a more
flexible programming model, and facilitate scalability. They can be used for either
single-threaded or multithreaded applications.

“Notification Classes”
“Notification Structure” on page 66

“Notify Observers Synchronously” on page 67
“Notify Observers Asynchronously” on page 71

Notification Classes
When an event requiring notification occurs, the notifier constructs an
INotificationEvent object defining the type of event and sends it to any observers
registered for that type of event. Each observer is responsible for handling the
event as appropriate.

The following class objects establish a notification pattern between application
objects:

64 IOC Library User’s Guide

v Notifiers provide the protocol needed by a notifier object to issue change
messages to observer objects.

v Observers define the protocol used by observers to connect to, and receive
notifications from a notifier object.

v Interests are used by observers to identify the specific event for which they wish
notification.

v Notification Events identify the notification type and are passed from the notifier
to one or more observers.

Notifiers
The notifier classes provide two classes that support the creation of objects capable
of communicating changes in their state to other objects.

v INotifier is an abstract base class that defines the notifier.

v IStandardNotifier is a derived class that concretely implements the notifier.

Notifier objects are responsible for defining the list of their supported notification
events, for managing lists of observers, and for notifying registered observers when
an event of interest occurs.

Observers
Observer classes define the protocol used by observers to register for and receive
notifications. The abstract base class IObserver is templatized into two versions:
IObserverConnectionTo, which takes only the target notifier; and
IObserverForConnectionTo, which takes both the target notifier and a specific event
notification data type.

Interests
An observer uses the IInterest class to indicate the types of notification it wants to
receive. IInterest provides helper functions that notifiers use to notify observers of
the events they are interested in. A notifier uses IInterest and INotificationEventFor
to pass event data to observers.

You can streamline your notification mechanisms by filtering the types of notification
an observer receives. The notifier contains a set of notification IDs that defines all
the possible types of changes, and observers can register to be notified only of the
types of changes they care about. The following is the typedef provided for
notification IDs:

typedef const char *INotificationId;

You use INotificationId to create simple strings that uniquely describe a particular
type of change that might originate notifications. Interests and notification events
use this ID to identify the type.

Notification Event Types
INotificationEvent encapsulates a single notification event. Notification event objects
identify the notification type, and are passed from the notifier to the observers.
INotificationEventFor is a templatized class used for passing event data from a
notifier to its observers.

“Event Notification” on page 63
“Notification Structure” on page 66

Chapter 2. Application Control 65

“Notify Observers Synchronously” on page 67
“Notify Observers Asynchronously” on page 71

Notification Structure
Notification Implementation
When an event requiring notification occurs, the notifier constructs an
INotificationEvent object defining the type of event and sends it to any observers
registered for that type of event. Each observer is responsible for handling the
event as appropriate.

To implement your own notification mechanism your code must follow a basic order,
or sequence, of calls:

1. Create a notifier.

2. Create an observer.

a. Connect the observer to the notifier.

b. Register with the notifier with an interest for a change or event.

When the appropriate event occurs in the notifier, it will create an INotificationEvent
object and send it to the observer. The observer can then process the notification.

Asynchronous or Synchronous Notification
You can send notifications synchronously or asynchronously, depending on the
requirements of both the notifier and the observer. Some notifiers require that
notifications be handled synchronously so that all notification processing is complete
before returning to the notifier. A system shutdown service is an example of this.

Other notifiers, such as a file server, might require that notifications be delivered
asynchronously so that they are not blocked for long periods of time, waiting for
observers to complete notification handling.

The Notification Framework provides two INotifier methods that you can use
depending on your needs. INotifier::notifyObservers() provides a synchronous
implementation and INotifier::notifyObserversAsync() provides one that is
asynchronous.

When you call INotifier::notifyObservers(), the notifier calls the notify member
function of all the connections interested in that notification in the same thread in
which INotifier::notifyObservers() was called. When the call completes, the notifier is
assured that all observers interested in the notification have received it.

However, this means that an observer can tie up the notifier by taking a long time to
process a notification.

When you call INotifier::notifyObserversAsync(), a request to perform the notification
is passed to a request processor. The notifier can then immediately continue to
perform other work. When the request processor eventually delivers the notification,
receivers cannot make any assumptions about the state of the notifier (even that it
still exists).

Note: You must take some care when passing pointers to data in an asynchronous
notification. The notifier must ensure that the data is not deleted before its
observers can process the notification. Because a notification may not yet have

66 IOC Library User’s Guide

been processed when the call to INotifier::notifyObserversAsync returns, the caller
that triggered the creation of the notification event cannot safely free the data at
that time.

Multi-threaded Notification
To register an observer, an observer’s handleNotificationFor() function is called. It,
in turn, chains into the notifier’s addObserver() function which can then record the
threadID associated with the observer.

When an event for which the observer is registered occurs, in the case of
synchronous multi-threaded notification, the notifier’s notifyObservers() function is
called.

The notification is dispatched on the same thread on which the observer was
created. This is basically the same behavior as if notifyObserversAsync() were
invoked instead of notifyObservers().

For asynchronous multi-threaded notification, when the notifier’s
notifyObserversAsync() function is called, it determines whether it needs to send a
notification to an observer in another thread. If so, it posts to the request queue
associated with the observer’s thread.

When using asynchronous notification, it is important to start the notification
dispatcher properly.

If you create observers in a non-GUI thread, one that does not use
IThread::current().processMsgs(), and you want the observers to receive
asynchronous notifications, then you should use
ICrossThreadNotificationLoop().run() in the non-GUI thread to dispatch to
asynchronous notification-aware observers. You would include code similar to the
following:

ICrossThreadNotificationLoop theLoop(anObserver);
theLoop.run();

“Event Notification” on page 63
“Notification Classes” on page 64

“Notify Observers Synchronously”
“Notify Observers Asynchronously” on page 71

Notify Observers Synchronously
Notification requires a notifier and at least one observer. Your code must instantiate
these objects:

1. A notifier derived from IStandardNotifier

2. An observer derived from IObserver

In the notifier, perform the following steps:

1. Define your interests. Interests are data members of type IInterest that you want
to observe.

Chapter 2. Application Control 67

2. Define your getters. Getters are member functions that serve as an interface for
your interests. Each getter should return a reference to one of your interests.

3. Define your setters. Setters are the member functions that will notify the
observers by sending them the appropriate interest. In each setter, call
notifyObservers(). The argument for notifyObervers() should be an
INotificationEvent object instantiated with the corresponding getter.

4. In the notifier’s constructor, call enableNotification().

In the observer, for each interest you wish to observe, perform the following steps:

1. Create a handler for each interest that you wish to observe. These handlers
take an INotificationEvent object as an argument.

2. For each handle, create an IObserverConnectionTo object. These objects are
your connections.

3. In the constructor for the observer, register each connection with the
handleNotificationsFor() member function. Use the corresponding getter for the
argument.

4. In the destructor, be sure to unregister the connection with the
stopHandlingNotificationsFor() function.

The following sample demonstrates the use of interest-based, synchronous
notification.
// Synchronous notification example

#include <istdntfy.hpp>
#include <iobservr.hpp>
#include <inotifev.hpp>

class MyCustomer : public IStandardNotifier
{
public:

// The constructor creates the three supported
// interests and enables notification. Any
// observer interested in a name change, address
// change, or home phone change will register with
// these interests.

MyCustomer() :
fNameChangedInterest (*this, nameId),
fAddressChangedInterest (*this, addressId),
fHomePhoneChangedInterest(*this, homePhoneId)
{

enableNotification();
}

virtual xMyCustomer() {};
virtual IString name() {return fName;}
virtual IString address() {return fAddress;}
virtual IString homePhone() {return fHomePhone;}

// These are the setters for MyCustomer. The
// setters will make the requested change and then
// notify observers by sending the appropriate
// interest via an INotificationEvent.

virtual void setName(IString newname)
{

fName = newname;
notifyObservers

(INotificationEvent(nameChangedInterest()));
}

68 IOC Library User’s Guide

virtual void setAddress (IString newaddress)
{

fAddress = newaddress;
notifyObservers

(INotificationEvent(addressChangedInterest()));
}

virtual void setHomePhone(IString newphone)
{

fHomePhone = newphone;
notifyObservers

(INotificationEvent(homePhoneChangedInterest()));
}

// These are the getters for the three supported
// interests. Any observer interested in a name
// change, address change, or home phone change
// will register with these interests.

IInterest& nameChangedInterest ()
{

return fNameChangedInterest;
}

IInterest& addressChangedInterest ()
{

return fAddressChangedInterest;
}

IInterest& homePhoneChangedInterest ()
{

return fHomePhoneChangedInterest;
}

private:

// Our data members

IString fName;
IString fAddress;
IString fHomePhone;

// These are interest members corresponding to the
// observable data members

IInterest fNameChangedInterest;
IInterest fAddressChangedInterest;
IInterest fHomePhoneChangedInterest;

// Declare the NotificationIds

static INotificationId const
nameId,
addressId,
homePhoneId;

};

// Define the INotificationIds

const INotificationId MyCustomer::nameId
= “MyCustomer::name”;

const INotificationId MyCustomer::addressId
= “MyCustomer::address”;

const INotificationId MyCustomer::homePhoneId
= “MyCustomer::homePhone”;

Chapter 2. Application Control 69

class MyObserver
{
public:

// constructor for observer

MyObserver (MyCustomer& aCustomer);
virtual xMyObserver();

// handler method to handle any change in the customer

virtual void
handleAnyChange(const INotificationEvent& anEvent)

{
printf(“>> Why hello, MyObserver::handleAnyChange ”);
printf(“just received the event: %s \n”,

anEvent.notificationId());
}

// handler method to handle just name changes
// in the customer

virtual void
handleNameChange(const INotificationEvent& anEvent)

{
printf(“>> Why hello, MyObserver::handleNameChange ”);
printf(“just received the event: %s \n”,

anEvent.notificationId());
}

private:

// for each event you are interested in, create
// a connection object

IObserverConnectionTo<MyObserver>
fAnyChangeConnection;

IObserverConnectionTo<MyObserver>
fNameChangeConnection;

MyCustomer& fCustomer;
};

// connect this observer to the given customer notifier

MyObserver::MyObserver(MyCustomer& aCustomer) :
fCustomer(aCustomer),

// all events trigger this method

fAnyChangeConnection
(*this, &MyObserver::handleAnyChange),

// only name change events trigger this method

fNameChangeConnection
(*this, &MyObserver::handleNameChange)

{
// this connection handles all notifications
// from aNotifier

fAnyChangeConnection.handleNotificationsFor(fCustomer);

// this connection handles only name change
// notifications from aNotifier

fNameChangeConnection.handleNotificationsFor

70 IOC Library User’s Guide

(fCustomer.nameChangedInterest());
}

// unregister from receiving events from the customer

MyObserver::xMyObserver()
{

fAnyChangeConnection.stopHandlingNotificationsFor(fCustomer);
fNameChangeConnection.stopHandlingNotificationsFor(fCustomer);

}

int main(int argc, char *argv[])
{

MyCustomer theCustomer;
MyObserver theObserver(theCustomer);

// should trigger handleAnyChange/handleNameChange

theCustomer.setName(“Raymond the IOC Writer”);

// should only trigger handleAnyChange

theCustomer.setAddress(“1150 Eglington Ave.”);
return 0;

}

The class MyCustomer is an example of deriving from an IStandardNotifier. The class
MyCustomer encapsulates a name, address, and home phone number. It supports
getting and setting its fields and notifies any registered observers when the name,
address, or home phone number changes.

The MyObserver class receives notifications. It uses IObserverConnections to direct
notifications to specific methods. In this example, it receives notifications from a
customer object.

Here is the output from the program:
>> Why hello, MyObserver::handleAnyChange just received the event:

MyCustomer::name
>> Why hello, MyObserver::handleNameChange just received the event:

MyCustomer::name
>> Why hello, MyObserver::handleAnyChange just received the event:

MyCustomer::address

“Event Notification” on page 63
“Notification Classes” on page 64
“Notification Structure” on page 66

“Notify Observers Asynchronously”
“Pass Data Along with Event Notification” on page 76

Notify Observers Asynchronously
To notify asynchronously, follow the same steps as for synchronous notification,
substituting a call to notifyObserversAsync for notifyObservers. You can implement
truly asynchronous notification by putting the notifier and the observer in different
threads.

The following procedures show you how to notify asynchronously by putting each
observer on a non-GUI thread:

Chapter 2. Application Control 71

v Asynchronous notification requires a notifier and at least one observer. Instantiate
the following objects in your code:

1. A notifier derived from IStandardNotifier

2. For each observer, a class derived from IObserver that inherits publicly
from IThreadFn

v In the notifier, perform the following steps:

1. Define your interests. Interests are data members of type IInterest that you
want to observe.

2. Define your getters. Getters are member functions that serve as an
interface for your interests. Each getter should return a reference to one of
your interests.

3. Define your setters. Setters are the member functions that will notify the
observers by sending them the appropriate interest. In each setter, call
notifyObserversAsync. The argument for notifyOberversAsync should be
an INotificationEvent object instantiated with the corresponding getter.

4. In the notifier’s constructor, call enableNotification().

v In each observer, perform the following steps:

1. Create a handler the interest the observer will observe. This handler is a
member function that takes an INotificationEvent object as an argument.

2. Override the IThreadFn::run() member function as follows:

a. Create an IObserverConnectionTo object from the interest you want to
observe. This object is a connection.

b. Register the connection with the handleNotificationsFor() member
function. Use the corresponding getter for the argument.

c. Create an ICrossThreadNotificationLoop object from the connection.

d. Call the ICrossThreadNotificationLoop::run() member function.

v In the main function, perform the following steps:

1. Create your observers.

2. Create an INonGUIThread object for each observer.

3. Start each thread with a reference to its corresponding observer.

The following example code demonstrates the use of interest-based, asynchronous
notification. The output of this program is the same as the example code presented
in the “Notify Synchronously” task:
// Notify Asynchronously

#include <istdntfy.hpp>
#include <iobservr.hpp>
#include <inotifev.hpp>
#include <ingthrd.hpp>

class MyCustomer : public IStandardNotifier
{
public:

// The constructor creates the three supported
// interests and enables notification. Any
// observer interested in a name change, address
// change, or home phone change will register with
// these interests.

MyCustomer();

virtual xMyCustomer() {};
virtual IString name() {return fName;}

72 IOC Library User’s Guide

virtual IString address() {return fAddress;}
virtual IString homePhone() {return fHomePhone;}

// These are the setters for MyCustomer. The
// setters will make the requested change and then
// notify observers by sending the appropriate
// interest via an INotificationEvent.

virtual void setName(IString newname)
{

fName = newname;
notifyObserversAsync

(INotificationEvent(nameChangedInterest()));
}

virtual void setAddress (IString newaddress)
{

fAddress = newaddress;
notifyObserversAsync

(INotificationEvent(addressChangedInterest()));
}

virtual void setHomePhone(IString newphone)
{

fHomePhone = newphone;
notifyObserversAsync

(INotificationEvent
(homePhoneChangedInterest()));

}

// These are the getters for the three supported
// interest. Any observer interested in a name
// change, address change, or home phone change
// will register with these interests.

IInterest& nameChangedInterest ()
{

return fNameChangedInterest;
}

IInterest& addressChangedInterest ()
{

return fAddressChangedInterest;
}

IInterest& homePhoneChangedInterest ()
{

return fHomePhoneChangedInterest;
}

private:

// Our data members

IString fName;
IString fAddress;
IString fHomePhone;

// These are interest members corresponding to the
// observable data members

IInterest fNameChangedInterest;
IInterest fAddressChangedInterest;
IInterest fHomePhoneChangedInterest;

// Declare the NotificationIds

Chapter 2. Application Control 73

static INotificationId const
nameId,
addressId,
homePhoneId;

};

// Define the INotificationIds

const INotificationId MyCustomer::nameId
= “MyCustomer::name”;

const INotificationId MyCustomer::addressId
= “MyCustomer::address”;

const INotificationId MyCustomer::homePhoneId
= “MyCustomer::homePhone”;

class MyNameChangeObserver: public IThreadFn
{

public:

// Constructor:
MyNameChangeObserver::MyNameChangeObserver

(MyCustomer& aCustomer): fCustomer(aCustomer)
{}

// handler function to handle any change in the customer

virtual void
handleNameChange(const INotificationEvent& anEvent)

{
printf(“>> Why hello, myObserver::handleNameChange ”);
printf(“just received the event:\n %s \n”,

anEvent.notificationId());
}

virtual void run();

private:

// for each event you are interested in, create
// a connection object
MyCustomer& fCustomer;

};

class MyAnyChangeObserver : public IThreadFn
{
public:

// constructor for observer

MyAnyChangeObserver::MyAnyChangeObserver(MyCustomer& aCustomer) :
fCustomer(aCustomer)

{}

// handler method to handle any change in the customer

virtual void
handleAnyChange(const INotificationEvent& anEvent)

{
printf(“>> Why hello, myObserver::handleAnyChange ”);
printf(“just received the event:\n %s \n”,

anEvent.notificationId());
}

// handler method to handle just name changes
// in the customer

74 IOC Library User’s Guide

virtual void run();

private:

// for each event you are interested in, create
// a connection object

MyCustomer& fCustomer;
};

// MyCustomer constructor:

MyCustomer::MyCustomer()
: fNameChangedInterest (*this, nameId)
, fAddressChangedInterest (*this, addressId)
, fHomePhoneChangedInterest(*this, homePhoneId)

{
enableNotification();

}

// Overriding IThreadFn::run() defines the
// code to be executed in a thread

void MyNameChangeObserver::run()
{

// for each event you are interested in, create
// a connection object

IObserverConnectionTo<MyNameChangeObserver>
fNameChangeConnection

(*this, &MyNameChangeObserver::handleNameChange);

// this connection handles only name change
// notifications from aNotifier
fNameChangeConnection.handleNotificationsFor

(fCustomer.nameChangedInterest());

// Start the notification dispatcher
ICrossThreadNotificationLoop

loopNameChange(fNameChangeConnection);
loopNameChange.run();

}

// Overriding IThreadFn::run() defines the
// code to be executed in a thread

void MyAnyChangeObserver::run()
{

// for each event you are interested in, create
// a connection object

IObserverConnectionTo<MyAnyChangeObserver>
fAnyChangeConnection

(*this, &MyAnyChangeObserver::handleAnyChange);

// this connection handles only name change
// notifications from aNotifier
fAnyChangeConnection.handleNotificationsFor

(fCustomer);

// Start the notification dispatcher
ICrossThreadNotificationLoop

loopAnyChange(fAnyChangeConnection);
loopAnyChange.run();

}

Chapter 2. Application Control 75

int main(int argc, char *argv[])
{

MyCustomer theCustomer;
MyNameChangeObserver *theNameChangeObserver =

new MyNameChangeObserver(theCustomer);
MyAnyChangeObserver *theAnyChangeObserver =

new MyAnyChangeObserver(theCustomer);

INonGUIThread threadAnyChange;
INonGUIThread threadNameChange;
threadAnyChange.start(theNameChangeObserver);
threadNameChange.start(theAnyChangeObserver);

// should trigger handleAnyChange/handleNameChange
INonGUIThread::current().sleep(1000);
theCustomer.setName(“Chester the Dog”);

// should only trigger handleAnyChange
INonGUIThread::current().sleep(1000);
theCustomer.setAddress(“Colchester, Ontario”);
return 0;

}

“Event Notification” on page 63
“Notification Classes” on page 64
“Notification Structure” on page 66

“Notify Observers Synchronously” on page 67

Pass Data Along with Event Notification
To pass event data along with a notification of the event, follow the same steps as
described in Notify Synchronously with these exceptions:

1. In your notifier, pass an INotificationEventFor object to notifyObservers instead
of an INotificationEvent object. That is, use this:

notifyObservers(INotificationEventFor
(myAlertInterestFunction(),

data));
// data is of type MyEventDataClass

instead of:
notifyObservers(INotificationEvent

(myAlertInterestFunction());

The constructor for an INotificationEventFor object takes two arguments: your
interest, and the event data you want to pass along with the notification of your
event.

2. In your observer, instead of creating connection objects of type
IObserverConnectionTo, use the connection template class
IObserverForConnectionTo. That is, use this:

IObserverForConnectionTo<MyEventDataClass, MyObserver>
myDataChangeConnection;

instead of:
IObserverConnectionTo<MyObserver>

myDataChangeConnection;

76 IOC Library User’s Guide

Notice that the constructor for IObserverForConnectionTo takes two data types
in its constructor: the type of the event data that you want to pass, and the type
of your observer.

3. The observer methods that are registered to handle the notification events have
a INotificationEventFor object parameter corresponding to the one used by the
notifier’s notifyObservers method. Use this form of handleNotification():

void handleNotification
(const INotificationEventFor<MyEventDataClass>& event);

instead of:
void handleNotification(const INotificationEvent& event);

4. INotificationEventFor<MyEventDataClass> has the following member function:
const MyEventDataClass& eventData() const;

that provides a mechanism to get the event data back from the notification
event.

“Event Notification” on page 63
“Notification Classes” on page 64
“Notification Structure” on page 66

“Notify Observers Synchronously” on page 67

Application Resources
A resource library is the file, such as an executable, dynamic link library (Windows
and OS/2) or shared library (AIX), with a compiled resource file bound to it.

Executable files are commonly referred to as program objects or objects
with an object type *PGM. A dynamic link library is referred to as a service program,
or an object of type *SRVPGM. Resource files are somewhat like message files;
they hold readable text, so that you can separate your code from the help and
messages. These resource files are compiled and then linked with compiled code to
form an executable or dynamic link library on operating systems like Windows.
However, on the iSeries, message files are not linked with a program object or
service program.

The IDLLModule class supports the loading, unloading, and addressing of entry
points in a dynamic link library (DLL) or shared library.

The IDLLModule class supports the activating and addressing of entry
points in a service program.

These classes make it easier and safer to track loaded DLLs. It provides access to
module information for those loaded DLLs, such as entry point addresses and the
file name of the module.

Search for Resource Files
You may specify how your application searches for resources libraries with the
IDynamicLinkLibrary or IDLLModule constructor. The enumerated type
IDLLModule::ESearchLocation defines the following search methods:

Chapter 2. Application Control 77

Search Method Description

kOSDefaultSearch Finds a resource library using the PATH or
LIBPATH environment variables following the
search rules of the native operating system.
This is the default search method.

kNLSPathSearch Finds the dynamic link library using the
NLSPATH environment variable after
substituting %L with the users’ current locale.

v On these platforms, it is
the LANG environment variable.

v Instead of using the
LANG environment, the user’s current
locale is retrieved from a call to
setlocale(LC_MESSAGES, NULL).
Therefore, IBM Open Class applications
should call setlocale() properly if they want
to load their libraries (and their message
catalogues) from the NLSPATH

Loading a resource library from NLSPATH
allows you to have multiple languages of
your resource libraries on a single system.

When loading a shared library using IDLLModule these classes will search
paths specified in the header section of the executable in addition to the NLSPATH
or the LIBPATH environment variables.

On z/OS, the following settings will be checked while attempting to load a
DLL module by an application running in native MVS (not USS) environment:

v STEPLIB

v JOBLIB

v Link pack area or extended link pack area (LPA/ELPA).

In HFS environment, paths found in environment variable LIBPATH are searched
before searching through the STEPLIB.

When activating a service program with the IDynamicLinkLibrary or
IDLLModule classes, the library list (*LIBL) is searched.

78 IOC Library User’s Guide

Chapter 3. Object Persistent

IBM Open Class Streaming Classes
The IBM Open Class Streaming Classes provide support for the storage and
retrieval of data, including both C++ objects and primitive types, from streams. The
Streaming Classes comprise three core elements:

v Data streams

v The IMStreamable class

v Stream modules

The Streaming Classes also define several exception classes. The topic Exceptions
Defined by the Streaming Classes lists these exception classes.

Capabilities supported by the Streaming Classes include monomorphic streaming,
polymorphic streaming, platform-to-platform data compatibility (a document
streamed out on one platform will be readable on another platform), and
release-to-release data compatibility (a document written by one version of an
application or system will be readable by a newer or an older version).

Typical usage of the Streaming Classes involves the following:

v Implementing persistent storage

v Marshalling function arguments for remote procedure-calls

v Streaming data polymorphically and monomorphically

v Implementing release-to-release data compatibility

v Streaming aliases and aliased objects

“Object Streaming”
“Release-to-Release Data Compatibility (RRDC)” on page 89
“Data Streams” on page 81
“Application Data Interfaces” on page 84
“Exceptions Defined by the Streaming Classes” on page 91
“Exceptions in the IBM Open Class” on page 259

“Add Streaming Support to Structs and Simple Classes” on page 85
“Create a Streamable Class” on page 86
“Create a Streamable Template Class” on page 88
“Instantiate a Stream Module” on page 82
“Enable Release-to-Release Data Compatibility” on page 90
“Stream Base Classes” on page 84
“Instantiate a Data Stream” on page 81
“Stream Data” on page 82

Object Streaming
Aliased Objects
Streaming supports the detection and correct handling of aliased pointers to
objects.

Suppose that:

v A and B are two objects to stream out

© Copyright IBM Corp. 1996, 2001 79

v A and B each have a pointer to the same third object C

v Both A and B are designed to write C to the stream

v When A and B are streamed back in, you need to create one object C to which
both A and B point

Without the detection of aliased objects, writing A and B to the stream would cause
two copies of C to be written to the stream. Reading the streamed data back in
would then result in the creation of two copies of C, one associated with A, the
other with B. This would not only waste memory, but would also be logically
incorrect. Changes made in one copy of C would not be reflected in the other, and
thus would not be seen by both A and B.

With the appropriate use of writeAliasedObject instead of plain writeObject, the
duplicate write of C would be recognized, and would be replaced by a flag, on the
stream, that refers back to the initial write. When A and B are read, only one C
would be created. The pointers in both A and B would refer to this single object.

Note that for some derived classes with multiple virtual inheritance, base classes
may be reachable through multiple paths of the inheritance hierarchy. When a client
streams a single instance of the derived class, the base class streaming functions
may be invoked more than once. However, streaming classes ensure that there will
no adverse effect on the results.

Monomorphic Streaming
Monomorphic streaming is used when you know the exact type of the data you are
streaming. Compared to polymorphic streaming, this can save some overhead.
Monomorphic streaming is useful for simple data types, and structs and objects
without vtables.

Polymorphic Streaming
Polymorphic streaming is used to stream an object given a pointer or reference to
one of its base classes. This is similar to calling a function which takes a base class
pointer, but passing in a pointer to a derived type. When a client reads from the
stream, objects of the correct type are automatically constructed and initialized from
the stream data.

Consider, for example, the subclasses of IMGraphic. A typical drawing has lines,
ellipses, and curves, as well as polygons. If you are streaming out many of these
objects, you don’t want to have to remember the precise sequence of data types
that you have streamed out. Polymorphism lets you classify all these objects as an
IMGraphic. You can then let the runtime type system figure out the precise class of
the object being streamed in to a pointer of type IMGraphic.

Polymorphic streaming, however, incurs more overhead than monomorphic
streaming in terms of time and space. Polymorphic streaming includes the type of
each object along with the object’s state in the external (stream) representation of
the object. This extra information gives the runtime system the information it needs
to reconstruct the correct object when it is streamed back in.

“IBM Open Class Streaming Classes” on page 79

“Stream Data” on page 82

80 IOC Library User’s Guide

Data Streams
You get an IDataStream object when you create a stream. This object handles the
encoding of data onto the stream, the decoding of data off of the stream, and the
buffering and physical I/O of the stream data. IDataStream is not intended to be
subclassed, instantiated directly, or copied. Data streams are created using stream
creation functions from other classes (for example, IFile::createStream).

You can write objects to streams in any order you choose, so long as you read
corresponding objects in the same order.

You must know the type of an object that has been written to a stream in order to
read it from the stream. When you stream in an object pointer, you must stream into
a pointer that is the same type as the object on the stream or one of the object’s
base classes.

If you write an object monomorphically, you must read it monomorphically. If you
write an object polymorphically, you must read it polymorphically. Monomorphic
streaming writes out only the bits that represent the value of the streamed object,
while polymorphic streaming writes out object information in addition to the object’s
value.

“IBM Open Class Streaming Classes” on page 79

“Stream Data” on page 82
“Instantiate a Data Stream”

Instantiate a Data Stream
The constructors for the IDataStream class are private and intended only for
internal use. You have two alternatives:

v If you want to read from or write to a file, you can instantiate an IDataStream if
you have an IFile object. See the topic Access the Contents of Files for more
information.

v If you want to stream data into or out of memory, you can instantiate a memory
stream, using the static IDataStream::createMemoryStream function.

You will typically use a memory stream in a test program to verify the operation of
the streaming functions of other classes. You create the stream, write to it, reset it
and then read from it. The backing memory grows as necessary to hold the data.
When you instantiate a memory stream, you can supply an optional stream format
encoding. The default is IDataStream::kInteroperableBinary.

v IDataStream::kRawBinary — This is a host-specific binary format. It has the best
performance, no cross-platform interoperability, and no support for RRDC.

v IDataStream:kInteroperableBinary — This is the canonical binary format. It
supports platform-to-platform and release-to-release data compatibility.

v IDataStream::kDebug — In this mode, the stream contents are printable ASCII
and annotated with comments to aid in their interpretation.

To instantiate a memory stream with the default encoding, kInteroperableBinary, use
the following code:
IDataStream* memoryStream = IDataStream::createMemoryStream();

Chapter 3. Object Persistent 81

To use a specific stream format encoding, pass the appropriate enumerated value
to the createMemoryStream function:

IDataStream* memoryStream = IDataStream::createMemoryStream(IDataStream::kRawBinary);
IDataStream* memoryStream = IDataStream::createMemoryStream(IDataStream::kInteroperableBinary);
IDataStream* memoryStream = IDataStream::createMemoryStream(IDataStream::kDebug);

“IBM Open Class Streaming Classes” on page 79
“Data Streams” on page 81

“Add Streaming Support to Structs and Simple Classes” on page 85
“Stream Data”
“Stream Base Classes” on page 84
“Access File Contents” on page 154

Instantiate a Stream Module
Typically, you will instantiate one instance of IStreamModule per library or
executable. Instances of IStreamModule are used to uniquely identify types on a
stream.

You must declare all stream modules as global variables. Do not declare them static
because they will not be visible to functions in other files.

IStreamModule gMyDataStreamModule(“MyDataStreamModule”);

In the source file for each of your streamable classes, make sure to associate your
class with the stream module. The second parameter of the
StreamableDefinitionsMacro expects the name of the module variable, not the
module name string:

// In source file for IChangeLanguageCommand
extern IStreamModule gMyDataStreamModule;

StreamableDefinitionsMacro(IChangeLanguageCommand, gMyDataStreamModule);

You can also declare the IStreamModule in one of your header files so that you
don’t have to declare the IStreamModule as “extern” in every implementation file
that uses it.

“IBM Open Class Streaming Classes” on page 79
“Data Streams” on page 81

“Create a Streamable Class” on page 86
“Create a Streamable Template Class” on page 88

Stream Data
Stream Aliases and Aliased Objects
It is critical that the objects not be deleted while the stream is still holding
references to them, and this is exactly the functionality that IMRefCounted provides.

Prior to streaming data, a context frame should be enabled. If your function is
streaming a series of objects that contain aliases, and it is important that those
aliases be preserved, either your function or some streaming function further up the
call chain must establish the context frame. For example, your implementation of
the writeToStream function for a collection element class does not need to create a

82 IOC Library User’s Guide

context explicitly, because a writeObject call upon the collection class holding the
element will result in a call to your writeToStream function, and a context frame will
already exist. But if some other function is iterating through the collection and
writing objects to a stream, outside the context of a writeObject call, then that
iterating function must create a context frame for the stream data.

Consider this example:
aStream = IDataStream::createMemoryStream();

{
IStreamContextFrame aContext(*aStream);
aStream->writeObject(obj1);
aStream->writeObject(obj2);

}

// The context is ended when the IStreamContextFrame object goes out
// of scope.

delete aStream;

An additional object that is referenced by both obj1 and obj2 will appear on the
stream only once. After an object has been written to the stream once, any
additional writes of the same object will be recognized as duplicates, and a tag
referring to the first instance of the object will be written instead.

Each top level writeObject and writeAliasedObject function automatically creates a
context that lasts for the duration of that writeObject or writeAliasedObject function
call. If one of the objects being streamed (obj1, for example) contains multiple
references to an additional object, only one instance of that additional object will be
streamed as consequence of streaming the enclosing object (obj1). In this case,
you need not explicitly create a context.

Stream Objects Monomorphically
To stream objects out monomorphically, create a stream and use the stream out
operator (operator>>=). In the following example, the call to
IDataStream::createMemoryStream() creates the data stream. The stream out
operator writes primitive data to the stream. This overloaded operator also writes
out the object mySimpleObject according to the implementation of
mySimpleObject::writeToStream.
IDataStream* myStream = IDataStream::createMemoryStream();
myData >>= *myStream;
mySimpleObject >>= *myStream;

To stream objects back in monomorphically, use the stream in operator
(operator<<=):
myData <<= *myStream;
mySimpleObject <<= *myStream;

Stream Objects Polymorphically
The stream out function ::writeObject polymorphically writes the object aliased by
objectPtr to the stream. Given an IDataStream*:
Base* objectPtr = new Derived;
::writeObject(objectPtr, *myStream);

To stream the object back in polymorphically, use the polymorphic stream in
function ::readObject. Given an IDataStream&:
Base* objectPtr;
::readObject(objectPtr, myStream);

Chapter 3. Object Persistent 83

This will “resurrect” an instance of the class Derived and assign objectPtr a pointer
to the derived class instance.

“IBM Open Class Streaming Classes” on page 79
“Object Streaming” on page 79

“Add Streaming Support to Structs and Simple Classes” on page 85
“Instantiate a Data Stream” on page 81
“Stream Base Classes”

Stream Base Classes
The streaming functions for a derived class must explicitly invoke the streaming
functions for each base class, in order to stream the full state of the object. Given a
class Derived which inherits from class Base:

void Derived::writeToStream(IDataStream& toWhere) const
{

IStreamOutFrame localFrame(toWhere);
Base::writeToStream(toWhere); // Stream out our base class
fData >>= toWhere; // then stream out our data members

}

The readFromStream function has the same general form:
void Derived::readFromStream(IDataStream& fromWhere)
{

IStreamInFrame localFrame(fromWhere);
Base::readFromStream(); // Stream in our base class
fData <<= fromWhere; // then stream in our data members.

};

“IBM Open Class Streaming Classes” on page 79
“Data Streams” on page 81

“Add Streaming Support to Structs and Simple Classes” on page 85
“Instantiate a Data Stream” on page 81
“Stream Data” on page 82

Application Data Interfaces
A class that supports streaming should provide, as part of its documentation, a
description of its data format on a stream. This application data interface (ADI) will
enable developers to create, without access to the original source code, programs
that can read the streamed data.

The ADI should include the type (class or primitive) and purpose of each item
written by the stream out function of the class, in the order that they are written. In
the case of polymorphic streaming, the ADI need only specify a base class type.

An ADI for a class would not include a description of the encoding for primitive
types or the stream tags and control information used by the IStreamIO class. It
would also not include the description for any embedded classes; these would be
obtained directly from the description of the embedded class.

84 IOC Library User’s Guide

Applications which need to interoperate with other applications that are not built with
z/OS C/C++ feature may want to support a data format that does not use Open
Class streaming. For example, a word processor would probably provide a way to
save or export a plain-text file for exchange with other applications.

“IBM Open Class Streaming Classes” on page 79

“Stream Data” on page 82
“Add Streaming Support to Structs and Simple Classes”
“Create a Streamable Class” on page 86

Add Streaming Support to Structs and Simple Classes
Structs or simple classes may be given limited streaming capabilities even though
they don’t inherit from IMStreamable. To add simple streaming support to a class:

1. If the class will be subclassed, add the functions readFromStream() and
writeToStream(). These functions need not be virtual, thus the “class” need not
have a vtable. The functions are similar to the corresponding functions for
IMStreamable classes, but they may not declare a stream frame.

2. Add the streaming operators for the class.
YourClass::operator>>=(IDataStream& toWhere) const;
YourClass::operator<<=(IDataStream& fromWhere);

In the implementation of these operators, simply invoke the corresponding
readFromStream or writeToStream function for the class. You can also put
the streaming functionality directly into the streaming operators, but using
readFromStream and writeToStream is more consistent with objects
provided by Open Class.

Instances of such classes are streamed using the streaming operators
only. They may not be streamed using writeObject and readObject, they
may not have stream in/out frames for RRDC, and they may not appear in
contexts for detection of pointer aliases.

Alternatively, put the streaming functionality directly into global streaming operators,
and omit readFromStream() and writeToStream() altogether. This approach is
appropriate for classes for which source changes are not possible. It has the
disadvantages that the streaming functionality is not bundled with the class being
streamed and that the structure of the code is less like that of an IMStreamable
class.The alternative global streaming operators have this form:

operator>>=(const YourClass& theObject, IDataStream& toWhere);
operator<<=(YourClass& theObject, IDataStream& fromWhere);

“IBM Open Class Streaming Classes” on page 79

“Create a Streamable Class” on page 86
“Create a Streamable Template Class” on page 88
“Instantiate a Stream Module” on page 82
“Instantiate a Data Stream” on page 81
“Stream Data” on page 82
“Stream Base Classes” on page 84

Chapter 3. Object Persistent 85

Create a Streamable Class
IMStreamable is a virtual base class that must be mixed into all classes that
support polymorphic streaming. It introduces virtual read-from and write-to stream
functions that all subclasses must override. To create a streamable class, you must
derive from IMStreamable and implement the streaming functions.

IStreamModule provides a way to group classes together or to qualify a class
name. It provides a context for objects on a stream to distinguish a class in one
DLL from a class with the same name in another DLL. Typically you will define one
stream module for each DLL or application. This will eliminate name conflicts and
avoid cross-DLL dependencies.

Every IMStreamable class, as part of its definition, must specify the stream module
to which it belongs.

StreamableDeclarationsMacro must appear as the first item inside the declaration of
all concrete classes that derive from IMStreamable. Abstract classes deriving from
IMStreamable must not include this macro.

StreamableDefinitionsMacro must appear in the implementation .cpp file for all
concrete classes that derive from IMStreamable. It identifies the IStreamModule to
which the class belongs. Abstract classes deriving from IMStreamable must not
include this macro.

To declare and define a streamable class, including its streaming functions, follow
these steps:

1. Derive from IMStreamable using the macro IMSTREAMABLE. This macro will
expand to the form of IMStreamable appropriate to the compiler platform.

In your class header file, include the declaration of IMSTREAMABLE:
#include <imstrmbl.hpp>

Derive your class from IMSTREAMABLE:
class MyClass : public MyBase, public IMSTREAMABLE {

StreamableDeclarationsMacro(MyClass);

private:
// This is class instance data that must be
// streamed by the streaming operators.
int fData;
SomeType* fObjectPointer;
AnotherType* fAnotherObjectPointer;
BaseType* fAbstractBasePointer;
SomeType fEmbeddedObject;
short fShortArray[123];
SomeType fSecondVersionObject;

public:
MyClass(); // Normal user class ...
virtual xMyClass();

2. Override the streaming functions writeToStream and readFromStream with
protected functions. The functions are invoked from the outside via
IMStreamable::operator >>=() and <<=():
protected:

virtual void writeToStream(IDataStream& toWhere) const;
virtual void readFromStream(IDataStream& fromWhere);

};

86 IOC Library User’s Guide

3. Associate the class with the stream module to which the class belongs. You
must define the module itself as a global variable in one of the implementation
files for your program. This macro will reference the module as an extern.

Add the following line to your .cpp file:
StreamableDefinitionsMacro(MyClass, gMyStreamModule);

4. Implement the stream-out function for your class:
void MyClass::writeToStream(IDataStream &toWhere) const
{

// Stream Frame local variable. Scope must enclose the writing of all
// data by this stream out operator.
IStreamOutFrame myFrame(toWhere);

// Stream out the base class.
// Base class streaming is the one case where
// writeToStream is used directly, instead of operator >>=
MyBase::writeToStream(toWhere);

// Stream out the data fields.
fData >>= toWhere; // A primitive type (an int).
*fObjectPointer >>= toWhere; // fObjectPointer must refer to

// a valid object. This streams the
// object monomorphically.

// Stream this object monomorphically. The type parameter is
// the actual type of the object being streamed.
// Handle nil pointers correctly.
::writeObject(fAnotherObjectPointer, toWhere);

// Always stream this object polymorphically.
::writeObject(fAbstractBasePointer, toWhere);

// Embedded objects always use the streaming operators.
// They don't need, and can't use, the nil pointer test
// and heap allocation performed by read or write object.
fEmbeddedObject >>= toWhere;

// Write the array of shorts.
toWhere.writeShorts(fShortArray, 123);

// This object was added to the stream format after the initial
//release.
fSecondVersionObject >>= toWhere;

};

5. Implement the stream-in function for your class:
void
MyClass::readFromStream(IDataStream &fromWhere)
{

// Create a local instance of IStreamInFrame.
IStreamInFrame myStreamFrame(fromWhere);

// Stream in the base class.
MyBase::readFromStream(fromWhere);

// Stream in the data fields.
fData <<= fromWhere; // A primitive type (an int).
*fObjectPointer <<= fromWhere; // fObjectPointer must refer

// to a valid object.

// Monomorphically stream in an object.
// Handle nil pointers correctly.
delete fAnotherObjectPointer;
::readObject(fAnotherObjectPointer, fromWhere,

AnotherType::staticTypeRepresentation);

Chapter 3. Object Persistent 87

// Polymorphic readObject. Stream always specifies
// the actual type of object to read.
delete fAbstractBasePointer;
::readObject(fAbstractBasePtr, fromWhere);
fEmbeddedObject <<= fromWhere;

// Read the array of shorts. Must know the size and have
// storage available before calling any array read function.
fromWhere.readShorts(fShortArray, 123);

// fSecondVersionObject may or may not be on the stream
// depending on which version of the class wrote to the
// stream.
if (!myStreamFrame.atEnd()) {

fSecondVersionObject <<= fromWhere;
}

};

“IBM Open Class Streaming Classes” on page 79

“Create a Streamable Template Class”
“Instantiate a Stream Module” on page 82

Create a Streamable Template Class
Streamable template classes differ from ordinary non-template classes in their use
of the streamable definitions and declarations macros. The macros used for
ordinary classes will not expand correctly within template classes. They are
replaced by a combination of inline code and an alternate declarations macro, as
shown in the following example:

template <class AType>
class IMyClass : public IMSTREAMABLE {

static IStreamableHelperFor< IMyClass<AType> > fgStreamableHelper;
StreamableTemplateDeclarationsMacro;

private:
// ...

};

Each instantiation of a template class is really a new class type. When you
instantiate a streamable template class, you must define and initialize its
IStreamableHelperFor variable:

The following shows an instantiation of IMyClass over int in the program’s
implementation file:

#include <myclass.hpp>

extern IStreamModule gMyStreamModule;

IMyClass<int> foo;
IStreamableHelperFor< IMyClass<int> > IMyClass<int>::fgStreamableHelper(

gMyStreamModule, 'IMyClass<int>');

The following shows another instantiation of the IMyClass, this time over IString:
#include <myclass.hpp>

extern IStreamModule gMyStreamModule;

88 IOC Library User’s Guide

IMyClass<IString> bar;
IStreamableHelperFor<IMyClass<IString> > IMyClass<int>::fgStreamableHelper(

gMyStreamModule, 'IMyClass<IString>');

“IBM Open Class Streaming Classes” on page 79
“Data Streams” on page 81

“Create a Streamable Class” on page 86
“Instantiate a Stream Module” on page 82

Release-to-Release Data Compatibility (RRDC)
Class version mismatches can occur when two machines running different software
versions exchange data or, on a single machine, when upgraded software accesses
older data. With z/OS C/C++ feature streaming classes, however, objects that are
created and written to a stream by one version of a class implementation are
readable on either a newer or older version.

Release-to-release data compatibility does not make use of version numbers. Class
data on a stream are bounded by a frame that allows stream in functions for a class
to know when they have reached the end of the data that was written or to skip
over any extra data. Thus, new implementations are able to sense that they are
reading an older stream data, and do not try to read data that does not exist on the
stream. Old class implementations are able to sense and skip over extra data that
was written by newer versions.

RRDC can support any number of versions of a class. The main requirements are
as follows:

v Each newer version must make its additions to the stream data format at the end
of the data written by the previous version.

v Data expected by older versions must continue to be written by newer versions.
If the new version doesn’t use the old data, then at stream-out time the new
version must synthesize the old data or at least a suitable approximation of it to
enable old versions to work when they stream in the data.

RRDC is only available when using one of the tagged stream formats (see
Instantiate a Data Stream for available stream formats). Raw binary stream formats
omit the tags that delimit object data on a stream. They are suitable for caching
data, streaming between two threads in the same process, and for streaming
between two processes on the same machine when both processes are using the
same version of a class. Raw binary stream formats are not suitable for persistent
data or for streaming between systems that may have different versions of the
same DLLs installed. The class wishing to provide RRDC can not enforce the use
of a tagged stream format; it’s up to whoever specifies the stream to choose an
appropriate encoding. RRDC enabled classes (those containing
IStreamIn/OutFrames) will stream their data correctly on non-tagged stream; it’s
only the ability to detect the end of a frame on reading that is lost.

Additional stream frames can be used within a class to delimit variable length data.

“IBM Open Class Streaming Classes” on page 79

Chapter 3. Object Persistent 89

“Stream Data” on page 82
“Instantiate a Data Stream” on page 81
“Enable Release-to-Release Data Compatibility”

Enable Release-to-Release Data Compatibility
To enable RRDC for a class:

1. The streaming functions must declare a local (stack) instance of a stream frame
object, the scope of which surrounds the actual streaming of the data. This is
done with IStreamInFrame and IStreamOutFrame. For a writeToStream function,
the frame will cause the extent of the object’s data on the stream to be tagged.
For a readFromStream function, the frame will facilitate testing for the end of the
object’s data and skipping over data to reach the end of the object.

2. On stream out, any extension data (additional data added to the stream format
by a new release of the class) must be streamed after the original data.

3. On stream in, a test to verify that the end of the stream data for that object has
not been reached must precede the reading of any extension data. This will
ensure that the stream was not written by an old class implementation that did
not provide extension data. On stream in, if the object’s data on the stream has
not been exhausted at the end of the readFromStream function, as signaled by
the stream frame object going out of scope, the remaining unread data will be
skipped.

RRDC is only available when one of the tagged stream formats is used. Raw binary
stream formats, which omit the tags that delimit object data on a stream, are not
suitable for persistent data or for streaming between systems that may have
different libraries installed. It is up to the client that specifies the stream to choose
an appropriate encoding. RRDC enabled classes will stream out their data correctly
on nontagged streams, but they will be unable to detect the end of a frame on
streaming in.

In the following example, the fData variable is replaced, in a later version of the
class, by fOldData and fNewData.

Here is the original version of DerivedClass::writeToStream:
void
DerivedClass::writeToStream(IDataStream& toStream) const
{

IStreamOutFrame streamContext(toStream); // Must be declared on stack.
BaseClass::writeToStream(toStream); // Write base class data first.
fData >>= toStream; // Write instance data to stream.

}

This is the original version of DerivedClass::readFromStream:
void
DerivedClass::readFromStream(IDataStream& fromStream)
{

IStreamInFrame streamContext(fromStream); // Must be declared on stack
BaseClass::readFromStream(fromStream); // Read base class data first.
fData <<= fromStream; // Read instance data from stream.

}

This is the new version of DerivedClass::writeToStream:
void
DerivedClass::writeToStream(IDataStream& toStream) const
{

IStreamOutFrame streamContext(toStream);

90 IOC Library User’s Guide

BaseClass::writeToStream(toStream);
fOldData >>= toStream; // Used to be fData
fNewData >>= toStream;

}

This is the new version of DerivedClass::readFromStream:
void
DerivedClass::readFromStream(IDataStream& fromStream) const
{

IStreamInFrame streamContext(fromStream);
BaseClass::readFromStream(fromStream);
fOldData <<= fromStream;

// fNewData may or may not be on the stream depending on
// which version of the class wrote to the stream.
if (!streamContext.atEnd()) {

fNewData <<= fromWhere;
}
else {

fNewData = fOldData; // The new data wasn't there so
// use the old data.

}
}

“IBM Open Class Streaming Classes” on page 79
“Release-to-Release Data Compatibility (RRDC)” on page 89

Exceptions Defined by the Streaming Classes
Streaming defines the following exception classes:

v IInvalidDataOnStream

v IUnknownTypeOnStream

v IEndOfStream

v IAddressAlreadyInContext

v IInvalidContextNumber

These exceptions can be raised while reading from a stream. They generally
indicate that the stream data is corrupt or that the type of data written does not
correspond to the type of data that the program is attempting to read from the
stream.

“IBM Open Class Streaming Classes” on page 79
“Exceptions in the IBM Open Class” on page 259

“Instantiate a Data Stream” on page 81

Chapter 3. Object Persistent 91

92 IOC Library User’s Guide

Chapter 4. USL I/O Streaming

This section refers to the USL I/O Stream Library.

z/OS C/C++ feature comes with ANSI-compliant stream classes. We recommend
that you use these stream classes instead to develop thread-safe applications. The
ANSI-compliant stream classes are part of the C++ Standard Library. For more
information about the C++ Standard I/O Stream Library, see the C/C++ Language
Reference.

The USL I/O Stream Library provides the standard input and output capabilities for
C++. In C++, input and output are described in terms of streams. The processing of
these streams is done at two levels. The first level treats the data as sequences of
characters; the second level treats it as a series of values of a particular type.

There are two primary base classes for the USL I/O Stream Library:

1. The streambuf class and the classes derived from it (strstreambuf, stdiobuf, and
filebuf) implement the stream buffers. Stream buffers act as temporary
repositories for characters that are coming from the ultimate producers of input
or are being sent to the ultimate consumers of output.

2. The ios class maintains formatting and error-state information for these streams.
The classes derived from ios implement the formatting of these streams. This
formatting involves converting sequences of characters from the stream buffer
into values of a particular type and converting values of a particular type into
their external display format.

The USL I/O Stream Library predefines streams for standard input, standard output,
and standard error. If you want to open your own streams for input or output, you
must create an object of an appropriate I/O Streams class. The iostream
constructor takes as an argument a pointer to a streambuf object. This object is
associated with the device, file, or array of bytes in memory that is going to be the
ultimate producer of input or the ultimate consumer of output.

Input and Output for User-Defined Classes
You can overload the input and output operators for the classes that you create
yourself. Once you have overloaded the input and output operators for a class, you
can perform input and output operations on objects of that class in the same way
that you would perform input and output on char, int, double, and the other built-in
types.

“The USL I/O Stream Class Hierarchy”
“USL I/O Stream Header Files” on page 95
“Stream Buffers” on page 99
“Format State Flags” on page 101
“Manipulators” on page 109
“The USL I/O Stream Classes and stdio.h” on page 96

The USL I/O Stream Class Hierarchy
The USL I/O Stream Library has two base classes, streambuf and ios:

© Copyright IBM Corp. 1996, 2001 93

The streambuf class implements stream buffers. streambuf is the base class for the
following classes:

v strstreambuf

v stdiobuf

v filebuf

The ios class maintains formatting and error state information for streams. Streams
are implemented as objects of the following classes that are derived from ios:

v stdiostream

v istream

v ostream

The classes that are derived from ios are themselves base classes.

The istream class is the input stream class. It implements stream buffer input, or
input operations. The following classes are derived from istream:

v istrstream

v ifstream

v istream_withassign

v iostream

The ostream class is the output stream class. It implements stream buffer output, or
output operations. The following classes are derived from ostream:

v ostrstream

v ofstream

v ostream_withassign

v iostream

94 IOC Library User’s Guide

The iostream class combines istream and ostream to implement input and output to
stream buffers. The following classes are derived from iostream:

v strstream

v iostream_withassign

v fstream

The USL I/O Stream Library also defines other classes, including fstreambase and
strstreambase. These classes are meant for the internal use of the USL I/O Stream
Library. Do not use them directly.

“Chapter 4. USL I/O Streaming” on page 93

USL I/O Stream Header Files
To use a USL I/O Stream class, you must include the appropriate header files for
that class. The following lists USL I/O Stream header files and the classes that they
cover:

The header file iostream.h contains declarations for the basic classes:

v strstreambuf

v ios

v istream

v istream_withassign

v ostream

v ostream_withassign

v iostream

v iostream_withassign

The header file fstream.h contains declarations for the classes that deal with files:

v filebuf

v ifstream

v ofstream

v fstream

The header file stdiostream.h contains declarations for stdiobuf and stdiostream, the
classes that specialize streambuf and ios, respectively, to use the FILE structures
defined in the C header file stdio.h.

The 8.3 file naming convention compliant name of this file is
stdiostr.h.

The header file strstream.h contains declarations for the classes that deal with
character strings.

The 8.3 file naming convention compliant name of this file is
strstrea.h.
The first “str” in each of these names stands for “string”:

v istrstream

v ostrstream

v strstream

v strstreambuf

Chapter 4. USL I/O Streaming 95

The header file iomanip.h contains declarations for the parameterized manipulators.
Manipulators are values that you can insert into streams or extract from streams to
affect or query the behavior of the streams.

The header file stream.h is used for compatibility with earlier versions of the USL
I/O Stream Library. It includes iostream.h, fstream.h, stdiostream.h, and iomanip.h,
along with some definitions needed for compatibility with the AT&T C++ Language
System Release 1.2. Only use this header file with existing code; do not use it with
new C++ code.

If you use the obsolete function form() declared in stream.h, there is a limit to the
size of the format specifier. If you call form() with a format specifier string longer
than this limit, a runtime message will be generated and the program will terminate.

“Chapter 4. USL I/O Streaming” on page 93

The USL I/O Stream Classes and stdio.h
In both C++ and C, input and output are described in terms of sequences of
characters, or streams. The USL I/O Stream Library provides the same facilities in
C++ that stdio.h provides in C, but it also has the following advantages over stdio.h:

v The input or extraction (>>) operator and the output or insertion (<<) operator are
typesafe. They are also easy to use.

v You can define input and output for your own types or classes by overloading the
input and output operators. This gives you a uniform way of performing input and
output for different types of data.

v The input and output operators are more efficient than scanf() and printf(), the
analogous C functions defined in stdio.h. Both scanf() and printf() take format
strings as arguments, and these format strings have to be parsed at run time.
This parsing can be time-consuming. The bindings for the USL I/O Stream output
and input operators are performed at compile time, with no need for format
strings. This can improve the readability of input and output in your programs,
and potentially the performance as well.

“Chapter 4. USL I/O Streaming” on page 93

Use Predefined Streams
In addition to giving you the facilities to define your own streams for input and
output, the USL I/O Stream Library also provides the following predefined streams:

v cin is the standard input stream.

file descriptor = 0.

v cout is the standard output stream.

file descriptor = 1.

v cerr is the standard error stream. Output to this stream is unit-buffered.
Characters sent to this stream are flushed after each output operation.

file descriptor = 2.

96 IOC Library User’s Guide

v clog is also an error stream, but unlike the output to cerr, the output to clog is
stream-buffered. Characters sent to this stream are flushed only when the stream
becomes full or when it is explicitly flushed.

file descriptor = 2.

The predefined streams are initialized before the constructors for any static objects
are called. You can use the predefined streams in the constructors for static objects.

The predefined streams cin, cerr, and clog are tied to cout. As a result, if you use
cin, cerr, or clog, cout is flushed. That is, the contents of cout are sent to their
ultimate consumer.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110
“Use Anonymous Streams”

Use Anonymous Streams
An anonymous stream is a stream that is created as a temporary object. Because it
is a temporary object, an anonymous stream requires a const type modifier and is
not a modifiable lvalue. Unlike the ATT C++ Language System Release 2.1, the
compiler does not allow a non-const reference argument to be matched with a
temporary object. User-defined input and output operators usually accept a
non-const reference (such as a reference to an istream or ostream object) as an
argument. Such an argument cannot be initialized by an anonymous stream, and
thus an attempt to use an anonymous stream as an argument to a user-defined
input or output operator will usually result in a compile-time error.

In the following example, three ways of writing a character to and reading it from a
file are shown:

1. Function f() uses anonymous streams with the built-in char type. This compiles
and runs successfully.

2. Function g() uses anonymous streams with a class that has a char as its only
data member, and that has input and output operators defined for it. This
produces a compilation error if you define anon when you compile. Otherwise,
this part of the program is not compiled.

Chapter 4. USL I/O Streaming 97

3. Function h()uses named streams to write a class object to and read it from a
file. This compiles and runs successfully:

// Using anonymous streams

#include <fstream.h>

class MyClass {
public:

char a;
};

istream& operator>>(istream& aStream, MyClass mc) {
return aStream >> mc.a;

}

ostream& operator<<(ostream& aStream, MyClass mc) {
return aStream << mc.a;

}

// 1. Use an anonymous stream with a built-in type; this works

void f() {
char a = 'a';

// write to the file
fstream(“file1.abc”,ios::out) << a << endl;

// read from the file
fstream(“file1.abc”,ios::in) >> a;

// show what was in the file
cout << a << endl;

}

#ifdef anon

// 2. Use an anonymous stream with a class type
// This produces compilation errors if “anon” is defined:

void g() {
MyClass b;
b.a ='b';

// write to the file
fstream(“file1.abc”,ios::out) << b << endl;

// read from the file
fstream(“file1.abc”,ios::in) >> b;

// show what was in the file
cout << b << endl;

}

#endif

// 3. Use a named stream with a class type; this works

void h() {
MyClass c;
c.a ='c';

// define and open the file
fstream File2(“file2.abc”,ios::out);

// write to the file
File2 << c << endl;

98 IOC Library User’s Guide

//close the file
File2.close();

// reopen for input
File2.open(“file2.abc”,ios::in);

// read from the file
File2 >> c;

// show what was in the file
cout << c << endl;

}

int main(int argc, char *argv[]) {
f();

#ifdef anon
g();

#endif
h();
return 0;

}

If you compile the above example with anon defined, compilation fails with
messages that resemble the following:
Call does not match any argument list for "ostream::operator<<".
Call does not match any argument list for "istream::operator>>".

If you compile without anon defined, the letters ’a’ and ’c’ are written to standard
output.

“Chapter 4. USL I/O Streaming” on page 93

Stream Buffers
One of the most important concepts in the USL I/O Stream Library is the stream
buffer. The streambuf class implements some of the member functions that define
stream buffers, but other specialized member functions are left to the classes that
are derived from streambuf: strstreambuf, stdiobuf, and filebuf.

The AT&T and UNIX System Laboratories C++ Language System documentation
use the terms reserve area and buffer instead of stream buffer.

What Does a Stream Buffer Do?
A stream buffer acts as a buffer between the ultimate producer (the source of data)
or ultimate consumer (the target of data) and the member functions of the classes
derived from ios that format this raw data. The ultimate producer can be a file, a
device, or an array of bytes in memory. The ultimate consumer can also be a file, a
device, or an array of bytes in memory.

Why Use a Stream Buffer?
In most operating systems, a system call to read data from the ultimate producer or
write it to the ultimate consumer is an expensive operation. If your applications can
reduce the number of system calls they have to make, they will usually be more
efficient. By acting as a buffer between the ultimate producer or ultimate consumer
and the formatting functions, a stream buffer can reduce the number of system calls
that are made.

Chapter 4. USL I/O Streaming 99

Consider, for example, an application that is reading data from the ultimate
producer. If there is no buffer, the application has to make a system call for each
character that is read. However, if the application uses a stream buffer, system calls
will only be made when the buffer is empty. Each system call will read enough
characters from the ultimate producer (if they are available) to fill the buffer again.

The main reason to use stream buffers on the z/OS is to ensure optimal
portability.

How is a stream buffer implemented?
A stream buffer is implemented as an array of bytes. For each stream buffer,
pointers are defined that point to elements in this array to define the get area (the
space that is available to accept bytes from the ultimate producer), and the put area
(the space that is available to store bytes that are on their way to the ultimate
consumer.

A stream buffer does not necessarily have separate get and put areas:

v A stream buffer that is used for input, such as one that is attached to an istream
object, has a get area.

v A stream buffer that is used for output, such as the one that is attached to an
ostream object, has a put area.

v A stream buffer that is used for both input and output, such as the one that is
attached to an iostream object, has both a get area and a put area.

v In stream buffers implemented by the filebuf class that are specialized to use
files as an ultimate producer or ultimate consumer, the get and put areas overlap.

The following member functions of the streambuf class return pointers to
boundaries of areas in a stream buffer:

Member function Description

base Returns a pointer to the beginning of the
stream buffer.

eback Returns a pointer to the beginning of the
space available for putback. Characters that
are putback are returned to the get area of
the stream buffer.

gptr Returns the get pointer (a pointer to the
beginning of the get area). The space
between gptr and egptr has been filled by
the ultimate producer.

egptr Returns a pointer to the end of the get area.

pbase Returns a pointer to the beginning of the
space available for the put area.

pptr Returns the put pointer (a pointer to the
beginning of the put area). The space
between pbase and pptr is filled with bytes
that are waiting to be sent to the ultimate
consumer. The space between pptr and
epptr is available to accept characters from
the application program that are on their way
to the ultimate consumer.

epptr Returns a pointer to the end of the put area.

100 IOC Library User’s Guide

Member function Description

ebuf Returns a pointer to the end of the stream
buffer.

In the actual implementation of stream buffers, the pointers returned by these
functions point at char values. In the abstract concept of stream buffers, on the
other hand, these pointers point to the boundary between char values. To establish
a correspondence between the abstract concept and the actual implementation, you
should think of the pointers as pointing to the boundary just before the character
that they actually point at.

The following diagram is the structure of a stream buffer:

“Chapter 4. USL I/O Streaming” on page 93

Format State Flags
The ios class defines an enumeration of format state flags that you can use to
affect the formatting of data in USL I/O streams. The following list shows the
formatting features and the format flags that control them:

v Whitespace and padding: ios::skipws, ios::left, ios::right, ios::internal

v Base conversion: ios::dec, ios::hex, ios::oct, ios::showbase

v Integral formatting: ios::showpos

v Floating-point formatting: ios::fixed, ios::scientific, ios::showpoint

v Uppercase and lowercase: ios::uppercase

v Buffer flushing: ios::stdio, ios::unitbuf

“Chapter 4. USL I/O Streaming” on page 93

Format Stream Output
The USL I/O Stream Library lets you define how output should be formatted on a
stream-by-stream basis within your program. Most formatting applies to numeric
data: what base integers should be written to the output stream in, how many digits

Chapter 4. USL I/O Streaming 101

of precision floating-point numbers should have, whether they should appear in
scientific or fixed-point format. Other formatting applies to any of the built-in types,
and to your own types if you design your class output operators to check the format
state of a stream to determine what formatting action to take.

This section describes a number of techniques you can use to change the way data
is written to output streams. One common characteristic of most of the methods
described (other than the method of changing the output field’s width) is that each
format state setting applies to its output stream until it is explicitly cleared, or is
overridden by a mutually exclusive format state. This differs from the C printf()
family of output functions, in which each printf() statement must define its formatting
information individually.

ios Methods and Manipulators
For some of the format flags defined for the ios class, you can set or clear them
using an ios function and a flag name, or by using a manipulator. With manipulators
you can place the change to a stream’s state within a list of outputs for that stream.
The following example shows two ways of changing the base of an output stream
from decimal to octal. The first, which is more difficult to read, uses the setf()
function to set the basefield field in the format state to octal. The second way uses
a manipulator, oct, within the output statement, to accomplish the same thing:
#include <iostream.h>
int main(int argc, char *argv[]) {

int a=9;
cout.setf(ios::oct,ios::basefield);
cout << a << endl;

// assume format state gets changed here, so we must change it back
cout << oct << a << endl;
return 0;
}

Note that you do not need to qualify a manipulator, provided you do not create a
variable or function of the same name as the manipulator. If a variable oct were
declared at the start of the above example, cout << oct ... would write the variable
oct to standard output. cout << ios::oct ... would change the format state.

Use setf, unsetf, and flags
There are two versions of the setf() function of ios. One version takes a single long
value newset as argument; its effect is to set any flags set in newset, without
affecting other flags. This version is useful for setting flags that are not mutually
exclusive with other flags (for example, ios::uppercase). The other version takes two
long values as arguments. The first argument determines what flags to set, and the
second argument determines which groups of flags to clear before any flags are
set. The second argument lets you clear a group of flags before setting one of that
group. The second argument is useful for flags that are mutually exclusive. If you
try to change the base field of the cout output stream using cout.setf(ios::oct);, setf()
sets ios::oct but it does not clear ios::dec if it is set, so that integers continue to be
written to cout in decimal notation. However, if you use
cout.setf(ios::oct,ios::basefield);, all bits in basefield are cleared (oct, dec, and hex)
before oct is set, so that integers are then written to cout in octal notation.

To clear format state flags, you can use the unsetf() function, which takes a single
argument indicating which flags to clear.

102 IOC Library User’s Guide

To set the format state to a particular combination of flags (without regard for the
pre-existing format state), you can use the flags(long flagset) member function of
ios. The value of flagset determines the resulting values of all the flags of the
format state.

The following example demonstrates the use of flags(), setf(), and unsetf(). The
main() function changes the flags as follows:

1. The original settings of the format state flags are determined, using flags().
These settings are saved in the variable originalFlags.

2. ios::fixed is set, and all other flags are cleared, using flags(ios::fixed).

3. ios::adjustfield is set to ios::right, without affecting other fields, using
setf(ios::right).

4. ios::floatfield is set to ios::scientific, and ios::adjustfield is set to ios::left, without
affecting other fields. The call to setf() is setf(ios::scientific | ios::left,
ios::floatfield|ios::adjustfield).

5. The original format state is restored, by calling flags() with an argument of
originalFlags, which contains the format state determined in step 1.

The function showFlags() determines and displays the current flag settings. It
obtains the value of the settings using flags(), and then excludes ios::oct from the
result before displaying the result in octal. This exclusion is done to display the
result in octal without causing the octal setting for ios::basefield to show up in the
program’s output.
//Using flags(), flags(long), setf(long), and setf(long,long)

#include <iostream.h>

void showFlags() {
// save altered flag settings, but clear ios::oct from them

long flagSettings = cout.flags() & (xios::oct) ;
// display those flag settings in octal

cout << oct << flagSettings << endl;
}

int main(int argc, char *argv[]) {
// get and display current flag settings using flags()

cout << “flags(): ”;
long originalFlags = cout.flags();
showFlags();

// change format state using flags(long)
cout << “flags(ios::fixed): ”;
cout.flags(ios::fixed);
showFlags();

// change adjust field using setf(long)
cout << “setf(ios::right): ”;
cout.setf(ios::right);
showFlags();

// change floatfield using setf(long, long)
cout << “setf(ios::scientific | ios::left,\n”

<< “ios::floatfield | ios::adjustfield): ”;
cout.setf(ios::scientific | ios::left,ios::floatfield |ios::adjustfield);
showFlags();

// reset to original setting
cout << “flags(originalFlags): ”;
cout.flags(originalFlags);
showFlags();
return 0;

}

This example produces the following output:

Chapter 4. USL I/O Streaming 103

flags(): 21
flags(ios::fixed): 10000
setf(ios::right): 10004
setf(ios::scientific | ios::left,
ios::floatfield | ios::adjustfield): 4002
flags(originalFlags): 21

Note that if you specify conflicting flags, the results are unpredictable. For example,
the results will be unpredictable if you set both ios::left and ios::right in the format
state of iosobj. You should set only one flag in each set of the following three sets:

v ios::left, ios::right, ios::internal

v ios::dec, ios::oct, ios::hex

v ios::scientific, ios::fixed.

Change the Notation of Floating-Point Values
You can change the notation and precision of floating-point values to match your
program’s output requirements. To change the precision with which floating-point
values are written to output streams, use ios::precision(). By default, an output
stream writes float and double values using six significant digits. The following
example changes the precision for the cout predefined stream to 17:

cout.precision(17);

You can also change between scientific and fixed notations for floating-point values.
Use the two-parameter version of the setf() member function of ios to set the
appropriate notation. The first argument indicates the flag to be set; the second
argument indicates the field of flags the change applies to. For example, to change
the notation of an output stream called File6, use:

File6.setf(ios::scientific,ios::floatfield);

This statement clears the settings of the ios::floatfield field and then sets it to
ios::scientific.

The ios::uppercase format state variable affects whether the “e” used in
scientific-notation floating-point values is in uppercase or lowercase. By default, it is
in lowercase. To change the setting to uppercase for an output stream called
TaskQueue, use:

TaskQueue.setf(ios::uppercase);

The following example shows the effect on floating-point output of changes made to
an output stream using ios format state flags and the precision member function:
// How format state flags and precision() affect output

#include <iostream.h>

int main(int argc, char *argv[]) {
double a=3.14159265358979323846;
double b;
long originalFlags=cout.flags();
int originalPrecision=cout.precision();
for (double exp=1.;exp<1.0E+25;exp*=100000000.) {

cout << “Printing new value for b:\n”;
b=a*exp; // Initialize b to a larger magnitude of a

// Now print b in a number of ways:
// In fixed decimal notation
cout.setf(ios::fixed,ios::floatfield);
cout << “ ” << b << '\n';
// In scientific notation
cout.setf(ios::scientific,ios::floatfield);
cout << “ ” <<b << '\n';

104 IOC Library User’s Guide

// Change the exponent from lower to uppercase
cout.setf(ios::uppercase);
cout << “ ” <<b << '\n';
// With 12 digits of precision, scientific notation
cout.precision(12);
cout << “ ” <<b << '\n';
// Same precision, fixed notation
cout.setf(ios::fixed,ios::floatfield);
// Now set everything back to defaults
cout.flags(originalFlags);
cout.precision(originalPrecision);
}
return 0;

}

The output from this program is:
Printing new value for b:

3.141593
3.141593e+00
3.141593E+00
3.141592653590E+00

Printing new value for b:
314159265.358979
3.141593e+08
3.141593E+08
3.141592653590E+08

Printing new value for b:
31415926535897932.000000
3.141593e+16
3.141593E+16
3.141592653590E+16

Printing new value for b:
3141592653589792849657856.000000
3.141593e+24
3.141593E+24
3.141592653590E+24

Change the Base of Integral Values
For output of integral values, you can choose decimal, hexadecimal, or octal
notation. You can either use setf() to set the appropriate ios flag, or you can place
the appropriate parameterized manipulator in the output stream. The following
example shows both methods:
//Showing the base of integer values

#include <iostream.h>
#include <iomanip.h>

int main(int argc, char *argv[]) {
int a=148;
cout.setf(ios::showbase); // show the base of all integral output:

// leading 0x means hexadecimal,
// leading 01 to 07 means octal,
// leading 1 to 9 means decimal

cout.setf(ios::oct,ios::basefield);
// change format state to octal

cout << a << '\n';
cout.setf(ios::dec,ios::basefield);

// change format state to decimal
cout << a << '\n';
cout.setf(ios::hex,ios::basefield);

// change format state to hexadecimal
cout << a << '\n';
cout << oct << a << '\n'; // Parameterized manipulators clear the

Chapter 4. USL I/O Streaming 105

cout << dec << a << '\n'; // basefield, then set the appropriate
cout << hex << a << '\n'; // flag within basefield.
return 0;

}

The ios::showbase flag determines whether numbers in octal or hexadecimal
notation are written to the output stream with a leading “0” or “0x”, respectively. You
can set ios::showbase where you intend to use the output as input to an I/O Stream
input stream later on. If you do not set ios::showbase and you try to use the output
as input to another stream, octal values and those hexadecimal values that do not
contain the digits a-f will be interpreted as decimal values; hexadecimal values that
do contain any of the digits a-f will cause an input stream error.

Set the Width and Justification of Output Fields
For built-in types, the output operator does not write any leading or trailing spaces
around values being written to an output stream, unless you explicitly set the field
width of the output stream, using the width() member function of ios or the setw()
parameterized manipulator. Both width() and setw() have only a short-term effect on
output. As soon as a value is written to the output stream, the field width is reset,
so that once again no leading or trailing spaces are inserted. If you want leading or
trailing blanks to appear on successively written values, you can use the setw()
manipulator within the output statement. For example:
#include <iostream.h>
#include <iomanip.h> // required for use of setw()
int main(int argc, char *argv[]) {

int i=-5,j=7,k=-9;
cout << setw(5) << i << setw(5) << j << setw(5) << k << endl;
return 0;

}

You can also specify how values should be formatted within their fields. If the
current width setting is greater than the number of characters required for the
output, you can choose between right justification (the default), left justification, or,
for numeric values, internal justification (the sign, if any, is left-justified, while the
value is right-justified). For example, the output statement above could be replaced
with:
cout << setw(5) << i; // -5
cout.setf(ios::left,ios::adjustfield);
cout << setw(5) << j; // 7
cout.setf(ios::internal,ios::adjustfield);
cout << setw(5) << k << endl; // -9

The following shows two lines of output, the first from the original example, and the
second after the output statement has been modified to use the field justification
shown above:

-5 7 -9
-57 - 9

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119

106 IOC Library User’s Guide

“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Define Your Own Format State Flags”
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Define Your Own Format State Flags
If you have defined your own input or output operator for a class type, you may
want to offer some flexibility in how you handle input or output of instances of that
class. The USL I/O Stream Library lets you define stream-specific flags that you can
then use with the format state member functions such as setf() and unsetf(). You
can then code checks for these flags in the input and output operators you write for
your class types, and determine how to handle input and output according to the
settings of those flags.

For example, suppose you develop a program that processes customer names and
addresses. In the original program, the postal code for each customer is written to
the output file before the country name. However, because of postal regulations,
you are instructed to change the record order so that the postal code appears after
the country name. The following example shows a program that translates from the
old file format to the new file format, or from the new file format to the old.

The program checks the input file for an exclamation mark as the first byte. If one is
found, the input file is in the new format, and the output file should be in the old
format. Otherwise the reverse is true. Once the program knows which file should be
in which format, it requests a free flag from each file’s stream object. It reads in and
writes out each record, and closes the file. The input and output operators for the
class check the format state for the defined flag, and order their output accordingly.
// Defining your own format flags

#include <fstream.h>
#include <stdlib.h>

long InFileFormat=0;
long OutFileFormat=0;

class CustRecord {
public:

int Number;
char Name[48];
char Phone[16];
char Street[128];
char City[64];
char Country[64];
char PostCode[10];

};

ostream& operator<<(ostream &os, CustRecord &cust) {
os << cust.Number << '\n'

<< cust.Name << '\n'
<< cust.Phone << '\n'
<< cust.Street << '\n'
<< cust.City << '\n';

if (os.flags() & OutFileFormat) // New file format
os << cust.Country << '\n'

<< cust.PostCode << endl;

Chapter 4. USL I/O Streaming 107

else // Old file format
os << cust.PostCode << '\n'

<< cust.Country << endl;
return os;
}

istream& operator>>(istream &is, CustRecord &cust) {
is >> cust.Number;
is.ignore(1000,'\n'); // Ignore anything up to and including new line
is.getline(cust.Name,48);
is.getline(cust.Phone,16);
is.getline(cust.Street,128);
is.getline(cust.City,64);
if (is.flags() & InFileFormat) { // New file format!

is.getline(cust.Country,64);
is.getline(cust.PostCode,10);
}

else {
is.getline(cust.PostCode,10);
is.getline(cust.Country,64);
}

return is;
}

int main(int argc, char* argv[]) {
if (argc!=3) { // Requires two parameters

cerr << “Specify an input file and an output file\n”;
exit(1);
}

ifstream InFile(argv[1]);
ofstream OutFile(argv[2],ios::out);

InFileFormat = InFile.bitalloc(); // Allocate flags for
OutFileFormat = OutFile.bitalloc(); // each fstream

if (InFileFormat==0 || // Exit if no flag could
OutFileFormat==0) { // be allocated
cerr << “Could not allocate a user-defined format flag.\n”;
exit(2);
}

if (InFile.peek()=='!') { // '!' means new format
InFile.setf(InFileFormat); // Input file is in new format
OutFile.unsetf(OutFileFormat); // Output file is in old format
InFile.get(); // Clear that first byte
}

else { // Otherwise, write '!' to
OutFile << '!'; // the output file, set the
OutFile.setf(OutFileFormat); // output stream's flag, and
InFile.unsetf(InFileFormat); // clear the input stream's
} // flag

CustRecord record;
while (InFile.peek()!=EOF) { // Now read the input file

InFile >> record; // records and write them
OutFile << record; // to the output file,
}

InFile.close(); // Close both files
OutFile.close();
return 0;

}

The following shows sample input and output for the program. If you take the output
from one run of the program and use it as input in a subsequent run, the output
from the later run is the same as the input from the preceding one.

108 IOC Library User’s Guide

Input File Output File

3848
John Smith
4163341234
35 Baby Point Road
Toronto
M6S 2G2
Canada
1255
Jean Martin
0418375882
48 bis Ave. du Belloy
Le Vesinet
78110
France

!3848
John Smith
4163341234
35 Baby Point Road
Toronto
Canada
M6S 2G2
1255
Jean Martin
0418375882
48 bis Ave. du Belloy
Le Vesinet
France
78110

Note that, in this example, a simpler implementation could have been to define a
global variable that describes the desired form of output. The problem with such an
approach is that later on, if the program is enhanced to support input from or output
to a number of different streams simultaneously, all output streams would have to
be in the same state (as far as the user-defined format variable is concerned), and
all input streams would have to be in the same state. By making the user-defined
format flag part of the format state of a stream, you allow formatting to be
determined on a stream-by-stream basis.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Manipulators
Manipulators provide a convenient way of changing the characteristics of an input
or output stream, using the same syntax that is used to insert or extract values.
With manipulators, you can embed a function call in an expression that contains a
series of insertions or extractions. Manipulators usually provide shortcuts for
sequences of iostream library operations.

The iomanip.h header file contains a definition for a macro IOMANIPdeclare().
IOMANIPdeclare() takes a type name as an argument and creates a series of

Chapter 4. USL I/O Streaming 109

classes you can use to define manipulators for a given kind of stream. Calling the
macro IOMANIPdeclare() with a type as an argument creates a series of classes
that let you define manipulators for your own classes. If you call IOMANIPdeclare()
with the same argument more than once in a file, you will get a syntax error.

Simple Manipulators and Parameterized Manipulators
There are two kinds of manipulators: simple and parameterized.

Simple manipulators do not take any arguments. The following classes have built-in
simple manipulators:

v ios

v istream

v ostream

Parameterized manipulators require one or more arguments. setfill (near the bottom
of the iomanip.h header file) is an example of a parameterized manipulator. You can
create your own parameterized manipulators and your own simple manipulators.

ios Methods and Manipulators
For some of the format flags defined for the ios class, you can set or clear them
using an ios function and a flag name, or by using a manipulator. With manipulators
you can place the change to a stream’s state within a list of outputs for that stream.

“Chapter 4. USL I/O Streaming” on page 93

“Create Manipulators”

Create Manipulators
Create Simple Manipulators for Your Own Types
The USL I/O Stream Library gives you the facilities to create simple manipulators
for your own types. Simple manipulators that manipulate istream objects are
accepted by the following input operators:

istream istream::operator>> (istream&, istream& (*f) (istream&));
istream istream::operator>> (istream&, ios&(*f) (ios&));

Simple manipulators that manipulate ostream objects are accepted by the following
output operators:

ostream ostream::operator<< (ostream&, ostream&(*f) (ostream&));
ostream ostream::operator<< (ostream&, ios&(*f) (ios&));

The definition of a simple manipulator depends on the type of object that it modifies.
The following table shows sample function definitions to modify istream, ostream,
and ios objects.

Class of object Sample function definition

istream istream &fi(istream&){ /*...*/ }

ostream ostream &fo(ostream&){ /*...*/ }

ios ios &fios(ios&){ /*...*/ }

For example, if you want to define a simple manipulator line that inserts a line of
dashes into an ostream object, the definition could look like this:

110 IOC Library User’s Guide

ostream &line(ostream& os)
{

return os << “\n--------------------------------”
<< “--------------------------------\n”;

}

Thus defined, the line manipulator could be used like this:
cout << line << “WARNING! POWER-OUT IS IMMINENT!” << line << flush;

This statement produces the following output:
--
WARNING! POWER-OUT IS IMMINENT!
--

Create Parameterized Manipulators for Your Own Types
The USL I/O Stream Library gives you the facilities to create parameterized
manipulators for your own types. Follow these steps to create a parameterized
manipulator that takes an argument of a particular type tp:

1. Call the macro IOMANIPdeclare(tp). Note that tp must be a single identifier. For
example, if you want tp to be a reference to a long double value, use typedef to
make a single identifier to replace the two identifiers that make up the type label
long double:

typedef long double& LONGDBLREF

2. Determine the class of your manipulator. If you want to define an APP
Parameterized manipulator, choose a class that has APP in its name (an APP
class, also known as an applicator). If you want to define a MANIP
Parameterized manipulator, choose a class that has MANIP in its name (a
MANIP class). Once you have determined which type of class to use, the
particular class that you choose depends on the type of object that the
manipulator is going to manipulate. The following table shows the class of
objects to be modified, and the corresponding manipulator classes.

Class to be modified Manipulator class

istream IMANIP(tp) or IAPP(tp)

ostream OMANIP(tp) or OAPP(tp)

iostream IOMANIP(tp) or IOAPP(tp)

The ios part of istream objects or ostream objects SMANIP(tp) or SAPP(tp)

3. Define a function f that takes an object of the class tp as an argument. The
definition of this function depends on the class you chose in step 2, and is
shown in the following table:

Class chosen Sample definition

IMANIP(tp) or IAPP(tp) istream &f(istream&, tp){/ *... */ }

OMANIP(tp) or OAPP(tp) ostream &f(ostream&, tp){/* ... */ }

IOMANIP(tp) or IOAPP(tp) iostream &f(iostream&, tp){/* ... */ }

SMANIP(tp) or SAPP(tp) ios &f(ios&, tp){/* ... */ }

4. Define the manipulator.

Parameterized manipulators defined with IOMANIP or IOAPP are not
associative. This means that you cannot use such manipulators more than once
in a single output statement.

Chapter 4. USL I/O Streaming 111

“Chapter 4. USL I/O Streaming” on page 93

“Define an APP Parameterized Manipulator”
“Define a MANIP Parameterized Manipulator”
“Define Nonassociative Parameterized Manipulators” on page 113

Define an APP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the user-defined
class my_class as an argument. One of the classes that is produced,
OAPP(my_class), is used to define the manipulator pre_print.
// Creating and using parameterized manipulators

#include <iomanip.h>

// declare class

class my_class {
public:

char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {}

};

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;
return o;

}

IOMANIPdeclare(my_class);

// define a manipulator for the class my_class
OAPP(my_class) pre_print=produce_prefix;

int main(int argc, char *argv[]) {
my_class obj(“Hello”,'-',10);
cout << pre_print(obj) << endl;
return 0;

}

This program produces the following output:
----------Hello

“Chapter 4. USL I/O Streaming” on page 93

“Create Manipulators” on page 110
“Define a MANIP Parameterized Manipulator”
“Define Nonassociative Parameterized Manipulators” on page 113

Define a MANIP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the user-defined
class my_class as an argument. One of the classes that is produced,
OMANIP(my_class), is used to define the manipulator pre_print().

112 IOC Library User’s Guide

#include <iostream.h>
#include <iomanip.h>

class my_class {
public: char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {};

};

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register int i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;
return o;

}

IOMANIPdeclare(my_class);

// define a manipulator for the class my_class

OMANIP(my_class) pre_print(my_class mc) {
return OMANIP(my_class) (produce_prefix,mc);

}

int main(int argc, char *argv[]) {
my_class obj(“Hello”,'-',10);
cout << pre_print(obj) << “\0” << endl;
return 0;

}

This example produces the following output:
----------Hello

“Chapter 4. USL I/O Streaming” on page 93

“Create Manipulators” on page 110
“Define an APP Parameterized Manipulator” on page 112
“Define Nonassociative Parameterized Manipulators”

Define Nonassociative Parameterized Manipulators
The following example demonstrates that parameterized manipulators defined with
IOMANIP or IOAPP are not associative. The parameterized manipulator mysetw() is
defined with IOMANIP. mysetw() can be applied once in any statement, but if it is
applied more than once, it causes a compile-time error. To avoid such an error, put
each application of mysetw into a separate statement.
// Nonassociative parameterized manipulators

#include <iomanip.h>

iostream& f(iostream & io, int i) {
io.width(i);
return io;

}

IOMANIP (int) mysetw(int i) {
return IOMANIP(int) (f,i);

}

iostream_withassign ioswa;

Chapter 4. USL I/O Streaming 113

int main(int argc, char *argv[]) {
ioswa = cout;
int i1 = 8, i2 = 14;
//
// The following statement does not cause a compile-time
// error.
//
ioswa << mysetw(3) << i1 << endl;
//
// The following statement causes a compile-time error
// because the manipulator mysetw is applied twice.
//
ioswa << mysetw(3) << i1 << mysetw(5) << i2 << endl;
//
// The following statements are equivalent to the previous
// statement, but they do not cause a compile-time error.
//
ioswa << mysetw(3) << i1;
ioswa << mysetw(5) << i2 << endl;
return 0;

}

“Chapter 4. USL I/O Streaming” on page 93

“Create Manipulators” on page 110
“Define an APP Parameterized Manipulator” on page 112
“Define a MANIP Parameterized Manipulator” on page 112

Thread Safety and USL I/O Streaming
The USL I/O Stream Library provides thread safety at the object level. This means
that it is safe to have multiple threads manipulate the same object. This library
provides streaming operators for the built in C++ types. With object level thread
safety, the output from one streaming operator will be streamed in entirety before
the next. However, in a multi-threaded environment, there is no guarantee that the
output from one streaming operator on the same thread will appear immediately
after the output from the preceding streaming operator. For example, given the
following scenario, either result may occur:

Scenario:

thread 1 cout << anInt1 << aString1;

thread 2 cout << anInt2 << aString2;

Result:

Desired anInt1 aString1 anInt2 aString2

Possible anInt1 aString1 aString2 anInt2

If order of output from separate threads is important, then explicit programmer
serialization is required.

On z/OS, to run in a multi-threaded environment, the z/OS UNIX kernel
must be available and active.

114 IOC Library User’s Guide

“Chapter 4. USL I/O Streaming” on page 93

Basic USL I/O Stream Tasks

Receive Input from Standard Input
When you specify the iostream.h header file as a source file for your project, four
streams are automatically defined for I/O use: cin, cout, cerr, and clog. The cin
stream is the standard input stream. Input to cin comes from the C standard input
stream, stdin, unless cin has been redirected by the user. The remaining streams
can be used for output. You can receive standard input using the predefined input
stream and the input operator (operator>>) for the type being read. In the following
example, an integer is read from the input stream into a variable:

int i;
cin >> i;

An input operator must exist for the type being read in. The USL I/O Stream Library
defines input operators for all C++ built-in types. For types you define yourself, you
need to provide your own input operators. If you attempt to read input into a
variable and no input operator is defined for the type of that variable, the compiler
displays an error message with text similar to the following:
Call does not match any parameter list for “operator>>”.

Use Input Streams other than cin
You can use the same techniques for input from other input streams as for input
from cin. The only difference is that, for other input streams, your program must
define the stream. Suppose that you have defined a stream attached to a file
opened for input, and have called that stream myin. You can read into myin from the
file by specifying myin instead of cin:

// assume that the input file is associated
// with stream myin

int a, b;
myin >> a >> b;

Multiple Variables in an Input Statement
You can receive input from a stream into a succession of variables with a single
input statement, by repeating the input operator (>>) after each input, and then
specifying the next variable to read in. You can combine variables of multiple types
in an input statement, without having to specify the types of those variables in the
input statement. The following example demonstrates this:

int i, j, k;
float m, n;

cin >> i >> j >> k >> m >> n;

The above syntax provides identical results to the following multiple input
statements:

int i, j, k;
float m, n;
cin >> i;
cin >> j;
cin >> k;
cin >> m;
cin >> n;

Chapter 4. USL I/O Streaming 115

If you want to enhance the readability of your source code, break the single input
statement up with white space, instead of separating it into multiple input
statements:

int i, j, k;
float m, n;
cin >> i

>> j
>> k
>> m
>> n;

String Input
If you want to read input into a character array (a string), you should declare the
character array using array notation, with a length large enough to hold the largest
string being entered. If you declare the character array using pointer notation, you
must allocate storage to the pointer, for example by using new or malloc. The
following example shows a correct and an incorrect way of placing input in a
character array:
char goodText[40];
char* badText;
cin >> goodText; // works as long as input is less than 40 chars
cin >> badText; // may cause a runtime error because no storage

// is allocated to *badText

In the above example, the input to badText can be made to work by inserting the
following code before the input:
badText=new char[40];

This guideline applies to input to any pointer-to-type. Storage must be allocated to
the pointer before input occurs.

White Space in String Input
The input operator uses white space to delineate items in the input stream,
including strings. If you want an entire line of input to be read in as a single string,
you should use the getline() function of istream:
// String input using operator << and getline()

#include <iostream.h>

int main(int argc, char *argv[]) {
char text1[100], text2[100];

// prompt and get input for text arrays
cout << “Enter two words:\n”;
cin >> text1 >> text2;

// display the text arrays
cout << “<” << text1 << “>\n”

<< “<” << text2 << “>\n”
<< “Enter two lines of text:\n”;

// ignore the next character if it is a newline
if (cin.peek()=='\n') cin.ignore(1,'\n');

// get a line of text into array text1
cin.getline(text1, sizeof(text1), '\n');

// get a line of text into array text2
cin.getline(text2, sizeof(text2), '\n');

// display the text arrays
cout << “<” << text1 << “>\n”

<< “<” << text2 << “>” << endl;
return 0;
}

116 IOC Library User’s Guide

The first argument of getline() is a pointer to the character array in which to store
the input. The second argument specifies the maximum number of bytes of input to
read and the third argument is the delimiter, which the library uses to determine
when the string input is complete. If you do not specify a delimiter, the default is the
new-line character.

Here are two samples of the input and output from this program. Input is shown in
bold type, and output is shown in regular type:
Enter two words:
Word1 Word2
<Word1>
<Word2>
Enter two lines of text:
First line of text
Second line of text
<First line of text>
<Second line of text>

For the above input, the program works as expected. For the input in the sample
below, the first input statement reads two white-space-delimited words from the first
line. The check for a new-line character does not find one at the next position
(because the next character in the input stream is the space following “happens”),
so the first getline() call reads in the remainder of the first line of input. The second
line of input is read by the second getline() call, and the program ends before any
further input can be read.
Enter two words:
What happens if I enter more words than it asks for?
<What>
<happens>
Enter two lines of text:
I suppose it will skip over the extra ones
<if I enter more words than it asks for?>
<I suppose it will skip over the extra ones>

Incorrect Input and the Error State of the Input Stream
When your program requests input through the input operator and the input
provided is incorrect or of the wrong type, the error state may be set in the input
stream and further input from that input stream may fail. One runtime symptom of
such a failure is that your program’s prompts for further input display without
pausing to wait for the input.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101

Chapter 4. USL I/O Streaming 117

“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Display Output on Standard Output or Standard Error
The USL I/O Stream Library predefines three output streams, as well as the cin
input stream. The standard output stream is cout, and the remaining streams, cerr
and clog, are standard error streams. Output to cout goes to the C standard output
stream, stdout, unless cout has been redirected. Output to cerr and clog goes to the
C standard error stream, stderr, unless cerr or clog has been redirected.

cerr and clog are really two streams that write to the same output device. The
difference between them is that cerr flushes its contents to the output device after
each output, while clog must be explicitly flushed.

You can print to one of the predefined output streams by using the predefined
stream’s name and the output operator (operator<<), followed by the value to print:
#include <iostream.h>
int main(int argc, char* argv[]) {

if (argc==1) cout << “Good day!” << endl;
else cerr << “I don't know what to do with ”

<< argv[1] << endl;
return 0;

}

If you name the compiled program myprog, the following inputs will produce the
following output to standard output or standard error:

Invocation Output

myprog Good day!
(to standard output)

myprog hello there I don't know what to do with hello
(to standard error)

An output operator must exist for any type being output. The USL I/O Stream
Library defines output operators for all C++ built-in types. For types you define
yourself, you need to provide your own output operators. If you attempt to place the
contents of a variable into an output stream and no output operator is defined for
the type of that variable, the compiler displays an error message with text similar to
the following:
The call does not match any parameter list for “operator<<”.

Multiple Variables in an Output Statement
You can place a succession of variables into an output stream with a single output
statement, by repeating the output operator (<<) after each output, and then
specifying the next variable to output. You can combine variables of multiple types
in an output statement, without having to specify the types of those variables in the
output statement. For example:
int i,j,k;
float l,m;
// ...
cout << i << j << k << l << m;

The above syntax provides identical results to the following multiple output
statements:

118 IOC Library User’s Guide

int i,j,k;
float l,m;
cout << i;
cout << j;
cout << k;
cout << l;
cout << m;

If you want to enhance the readability of your source code, break the single output
statement up with white space, instead of separating it into multiple output
statements:
int i,j,k;
float l,m;
cout << i

<< j
<< k
<< l
<< m;

Use Output Streams other than cout, cerr, and clog
You can use the same techniques for output to other output streams as for output to
the predefined output streams. The only difference is that, for other output streams,
your program must define the stream. Assuming you have defined a stream
attached to a file opened for output, and have called that stream myout, you can
write to that file through its stream, by specifying the stream’s name instead of cout,
cerr or clog:
// assume the output file is associated with stream myout

int a,b;
myout << a << b;

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Flush Output Streams with endl and flush”
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Flush Output Streams with endl and flush
Output streams must be flushed for their contents to be written to the output device.
Consider the following:

Chapter 4. USL I/O Streaming 119

cout << “This first calculation may take a very long time\n”;
firstVeryLongCalc();
cout << “This second calculation may take even longer\n”;
secondVeryLongCalc();
cout << “All done!”;

If the functions called in this excerpt do not themselves perform input or output to
the standard I/O streams, the first message will be written to the cout buffer before
firstVeryLongCalc() is called. The second message will be written before
secondVeryLongCalc() is called, but the buffer may not be flushed (written out to
the physical output device) until an implicit or explicit flush operation occurs. As a
result, the above program displays its messages about expected delays after the
delays have already occurred. If you want the output to be displayed before each
function call, you must flush the output stream.

A stream is flushed implicitly in the following situations:

v The predefined streams cout and clog are flushed when input is requested from
the predefined input stream (cin).

v The predefined stream cerr is flushed after each output operation.

v An output stream that is unit-buffered is flushed after each output operation. A
unit-buffered stream is a stream that has ios::unitbuf set.

v An output stream is flushed whenever the flush() member function is applied to it.
This includes cases where the flush or endl manipulators are written to the output
stream.

v The program terminates.

The above example can be corrected so that output appears before each
calculation begins, as follows:
cout << “This first calculation may take a very long time\n”;
cout.flush();
firstVeryLongCalc();
cout << “This second calculation may take even longer\n”;
cout.flush();
secondVeryLongCalc();
cout << “All done!”
cout.flush();

Placing endl or flush in an Output Stream
The endl and flush manipulators give you a simple way to flush an output stream:
cout << “This first calculation may take a very long time” << endl;
firstVeryLongCalc();
cout << “This second calculation may take even longer” << endl;
secondVeryLongCalc();
cout << “All done!” << flush;

Placing the flush manipulator in an output stream is equivalent to calling flush() for
that output stream. When you place endl in an output stream, it is equivalent to
placing a new-line character in the stream, and then calling flush().

Avoid using endl where the new-line character is required but buffer flushing is not,
because endl has a much higher overhead than using the new-line character. For
example:
cout << “Employee ID: ” << emp.id << endl

<< “Name: ” << emp.name << endl
<< “Job Category: ” << emp.jobc << endl
<< “Hire date: ” << emp.hire << endl;

120 IOC Library User’s Guide

is not as efficient as:
cout << “Employee ID: ” << emp.id

<< “\nName: ” << emp.name
<< “\nJob Category: ” << emp.jobc
<< “\nHire date: ” << emp.hire << endl;

You can include the new-line character as the start of the character string that
immediately follows the location where the endl manipulator would have been
placed, or as a separate character enclosed in single quotation marks:
cout << “Salary: ” << emp.pay << '\n'

<< “Next raise: ” << emp.elig_raise << endl;

Flushing a stream generally involves a high overhead. If you are concerned about
performance, only flush a stream when necessary.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Parse Multiple Inputs”
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Parse Multiple Inputs
The USL I/O Stream Library input streams determine when to stop reading input
into a variable based on the type of variable being read and the contents of the
stream. The easiest way to understand how input is parsed is to write a simple
program such as the following, and run it several times with different inputs.
#include <iostream.h>
int main(int argc, char *argv[]) {

int a,b,c;
cin >> a >> b >> c;
cout << “a: <” << a << “>\n”

<< “b: <” << b << “>\n”
<< “c: <” << c << '>' << endl;

return 0;
}

The following table shows sample inputs and outputs, and explains the outputs. In
the “Input” column, <\n> represents a new-line character in the input stream.

Chapter 4. USL I/O Streaming 121

Input Output Remarks

123<\n> No output. a has been assigned the value 123,
but the program is still waiting on input for b and
c.

1<\n>
2<\n>
3<\n>

a: <1>
b: <2>
c: <3>

White space (in this case, new-line characters) is
used to delimit different input variables.

1 2 3<\n> a: <1>
b: <2>
c: <3>

White space (in this case, spaces) is used to
delimit different input variables. There can be any
amount of white space between inputs.

123,456,789<\n> a: <123>
b:
<-559038737>
c:
<- 559038737>

Characters are read into int a up to the first
character that is not acceptable input for an
integer (the comma). Characters are read into int
b where input for a left off (the comma). Because
a comma is not one of the allowable characters
for integer input, ios::failbit is set, and all further
input fails until ios::failbit is cleared.

1.2 2.3<\n>
3.4<\n>

a: <1>
b:
<-559038737>
c:
<-559038737>

As with the previous example, characters are
read into a until the first character is encountered
that is not acceptable input for an integer (in this
case, the period). The next input of an int causes
ios::failbit to be set, and so both it and the third
input result in errors.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Open a File for Input and Read from the File”
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Open a File for Input and Read from the File
Use the following steps to open a file for input and to read from the file.

1. Construct an fstream or ifstream object to be associated with the file. The file
can be opened during construction of the object, or later.

z/OS C/C++ provides overloads of the fstream and ifstream
constructors and their open() functions, which allow you to specify file attributes
such as lrecl and recfm. Refer to the IBM Open Class Reference for more
information.

122 IOC Library User’s Guide

2. Use the name of the fstream or ifstream object and the input operator or other
input functions of the istream class, to read the input.

3. Close the file by calling the close() member function or by implicitly or explicitly
destroying the fstream or ifstream object.

Construct an fstream or ifstream Object for Input
You can open a file for input in one of two ways:

v Construct an fstream or ifstream object for the file, and call open() on the object:
#include <fstream.h>
int main(int argc, char *argv[]) {

fstream infile1;
ifstream infile2;
infile1.open(“myfile.dat”,ios::in);
infile2.open(“myfile.dat”);
// ...

}

v Specify the file during construction, so that open() is called automatically:
#include <fstream.h>
int main(int argc, char *argv[]) {

fstream infile1(“myfile.dat”,ios::in);
ifstream infile2(“myfile.dat”);
// ...

}

The only difference between opening the file as an fstream or ifstream object is
that, if you open the file as an fstream object, you must specify the input mode
(ios::in). If you open it as an ifstream object, it is implicitly opened in input mode.
The advantage of using ifstream rather than fstream to open an input file is that, if
you attempt to apply the output operator to an ifstream object, this error will be
caught during compilation. If you attempt to apply the output operator to an fstream
object, the error is not caught during compilation, and may pass unnoticed at
runtime.

The advantage of using fstream rather than ifstream is that you can use the same
object for both input and output. For example:
// Using fstream to read from and write to a file

#include <fstream.h>
int main(int argc, char *argv[]) {

char q[40];
fstream myfile(“test.txt”,ios::in); // open the file for input
myfile >> q; // input from myfile into q
myfile.close(); // close the file
myfile.open(“test.txt”,ios::app); // reopen the file for output
myfile << q << endl; // output from q to myfile
myfile.close(); // close the file
return 0;

}

This example opens the same file first for input and later for output. It reads in a
character string during input, and writes that character string to the end of the same
file during output. Let’s assume that the contents of the file test.txt before the
program is run are:
barbers often shave

In this case, the file contains the following after the program is run:
barbers often shave
barbers

Chapter 4. USL I/O Streaming 123

Note that you can use the same fstream object to access different files in
sequence. In the above example, myfile.open(“test.txt”,ios::app) could have read
myfile.open(“test.out”,ios::app) and the program would still have compiled and run,
although the end result would be that the first string of test.txt would be appended
to test.out instead of to test.txt itself.

Read Input from a File
The statement myfile >> a reads input into a from the myfile stream. Input from an
fstream or ifstream object resembles input from the standard input stream cin, in all
respects except that the input is a file rather than standard input, and you use the
fstream object name instead of cin. The two following programs produce the same
output when provided with a given set of input. In the case of stdin.C, the input
comes from the standard input device. In the case of filein.C, the input comes from
the file file.in:

stdin.C filein.C

#include <iostream.h>

int main(int argc, char *argv[]) {
int ia,ib,ic;
char ca[40],cb[40],cc[40];
// cin is predefined
cin >> ia >> ib >> ic

>> ca;
cin.getline(cb,sizeof(cb),'\n');
cin >> cc;
// no need to close cin
cout << ia << ca

<< ib << cb
<< ic << cc << endl;

return 0;
}

#include <fstream.h>

int main(int argc, char *argv[]) {
int ia,ib,ic;
char ca[40],cb[40],cc[40];
fstream myfile(“file.in”,ios::in);
myfile >> ia >> ib >> ic

>> ca;
myfile.getline(cb,sizeof(cb),'\n');
myfile >> cc;
myfile.close();
cout << ia << ca

<< ib << cb
<< ic << cc << endl;

return 0;
}

In both examples, the program reads the following, in sequence:

1. Three integers

2. A whitespace-delimited string

3. A string that is delimited either by a new-line character or by a maximum length
of 39 characters.

4. A whitespace-delimited string.

When you define an input operator for a class type, this input operator is available
both to the predefined input stream cin and to any input streams you define, such
as myfile in the above example.

All techniques for reading input from the standard input stream can also be used to
read input from a file, providing your code is changed so that the cin object is
replaced with the name of the fstream object associated with the input file.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118

124 IOC Library User’s Guide

“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Output and Write to the File”
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Open a File for Output and Write to the File
To open a file for output, use the following steps:

1. Declare an fstream or ofstream object to associate with the file, and open it
either when the object is constructed, or later:
#include <fstream.h>
int main(int argc, char *argv[]) {

fstream file1(“file1.out”,ios::app);
ofstream file2(“file2.out”);
ofstream file3;
file3.open(“file3.out”);
return 0;

}

You must specify one or more open modes when you open the file, unless you
declare the object as an ofstream object. The advantage of accessing an output
file as an ofstream object rather than as an fstream object is that the compiler
can flag input operations to that object as errors.

z/OS C/C++ provides overloads of the fstream and ofstream
constructors and their open() functions, which allow you to specify file attributes
such as lrecl and recfm. Refer to the IBM Open Class Reference for more
information.

2. Use the output operator or ostream member functions to perform output to the
file.

3. Close the file using the close() member function of fstream.

When you define an output operator for a class type, this output operator is
available both to the predefined output streams and to any output streams you
define.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Associate a File with a Standard Input or Output Stream” on page 126

Chapter 4. USL I/O Streaming 125

“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Combine Input and Output of Different Types
The USL I/O Stream Library overloads the input (>>) and output (<<) operators for
the built-in types. As a result, you can combine input or output of values with
different types in a single statement without having to state the type of the values.
For example, you can code an output statement such as:

cout << aFloat << “ ” << aDouble << “\n” << aString << endl;

without needing to provide type or formatting information for each output.

“Chapter 4. USL I/O Streaming” on page 93

“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream”
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Advanced USL I/O Stream Tasks

Associate a File with a Standard Input or Output Stream
The iostream_withassign class lets you associate a stream object with one of the
predefined streams cin, cout, cerr, and clog. You can do this, for example, to write
programs that accept input from a file if a file is specified, or from standard input if
no file is specified.

The following program is a simple filter that reads input from a file into a character
array, and writes the array out to a second file. If only one file is specified on the
command line, the output is sent to standard output. If no file is specified, the input
is taken from standard input. The program uses the iostream_withassign
assignment operator to assign an ifstream or ofstream object to one of the
predefined streams.

126 IOC Library User’s Guide

// Generic I/O Stream filter, invoked as follows:
// filter [infile [outfile]]

#include <iostream.h>
#include <fstream.h>

int main(int argc, char* argv[]) {
ifstream* infile;
ofstream* outfile;
char inputline[4096]; // used to read input lines
int sinl=sizeof(inputline); // used by getline() function
if (argc>1) { // if at least an input file was specified

infile = new ifstream(argv[1]); // try opening it
if (infile->good()) // if it opens successfully

cin = *infile; // assign input file to cin

if (argc>2) { // if an output file was also specified
outfile = new ofstream(argv[2]); // try opening it
if (outfile->good()) // if it opens successfully

cout = *outfile; // assign output file to cout
}

}

cin.getline(inputline,
sizeof(inputline),'\n'); // get first line
while (cin.good()) { // while input is good
//
// Insert any line-by-line filtering here
//
cout << inputline << endl; // write line
cin.getline(inputline,sinl,'\n'); // get next line (sinl specifies
} // max chars to read)
if (argc>1) { // if input file was used

infile->close(); // then close it
if (argc>2) { // if output file was used

outfile->close(); // then close it
}

}
return 0;

}

You can use this example as a starting point for writing a text filter that scans a file
line by line, makes changes to certain lines, and writes all lines to an output file.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Chapter 4. USL I/O Streaming 127

Move through a file with filebuf Functions
In a program that receives input from an fstream object (a file), you can associate
the fstream object with a filebuf object, and then use the filebuf object to move the
get or put pointer forward or backward in the file. You can also use filebuf member
functions to determine the length of the file.

To associate an fstream object with a filebuf object, you must first construct the
fstream object and open it. You then use the rdbuf() member function of the fstream
class to obtain the address of the file’s filebuf object. Using this filebuf object, you
can move through the file or determine the file’s length, with the seekpos() and
seekoff() functions. For example:
// Using the filebuf class to move through a file

#include <fstream.h> // for use of fstream classes
#include <iostream.h> // not really needed since fstream includes it
#include <stdlib.h> // for use of exit() function

int main(int argc, char *argv[]) {
// declare a streampos object to keep track of the position in filebuf
streampos Position;

// declare a streamoff object to set stream offsets
// (for use by seekoff and seekpos)
streamoff Offset=0;

// declare an fstream object and open its file for input
fstream InputFile(“algonq.uin”,ios::in);

// check that input was successful, exit if not
if (!InputFile) {

cerr << “Could not open algonq.uin! Exiting...\n”;
exit(-1);
}

// associate the fstream object with a filebuf pointer
filebuf *InputBuffer=InputFile.rdbuf();

// read the first line, and display it
char LineOfFile[128];
InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');
cout << LineOfFile << endl;

// Now skip forward 100 bytes and display another line
Offset=100;
Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);
InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');
cout << “At position ” << Position << “:\n”

<< LineOfFile << endl;

// Now skip back 50 bytes and display another line
Offset=-50;
Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);
// ios::cur refers to current position in buffer
InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');
cout << “At position ” << Position << “:\n”

<< LineOfFile << endl;

// Now go to position 137 and display to the end of its line
Position=137;
InputBuffer->seekpos(Position,ios::in);
InputFile.getline(LineOfFile,sizeof(LineOfFile),'\n');
cout << “At position ” << Position << “:\n”

<< LineOfFile << endl;

// Now close the file and end the program
InputFile.close();
return 0;
}

If the file algonq.uin contains the following text:

128 IOC Library User’s Guide

The trip begins on Round Lake.
We proceed through a marshy portage,
and soon find ourselves in a river whose water is the color of ink.
A heron flies off in the distance.
Frogs croak cautiously alongside the canoes.
We can feel the sun's heat glaring at us from grassy shores.

the output of the example program is:
The trip begins on Round Lake.
At position 131:
ink.
At position 86:
elves in a river whose water is the color of ink.
At position 137:
heron flies off in the distance.

Use Encoded and Relative Byte Offsets to Move through a File
The following example shows how you can use both encoded and relative byte
offsets to move through a file. Note that encoded offsets are specific to z/OS C/C++
and programs that use them may not be portable.
// Example of using encoded and relative byte offsets
// in seeking through a file

#include <iomanip.h>
#include <fstream.h>

int main(int argc, char *argv[]) {
fstream fs(“tseek.data”, ios::out); // create tseek.data
filebuf* fb = fs.rdbuf();
streamoff off[5];
int pos[5] = {0, 30, 42, 197, 0};

for (int i = 0, j = 0; i < 200; ++i) {
if (i == pos[j])

off[j++] = (*fb).seekoff(0L, ios::cur, ios::out);
fs << setw(4) << i;
if (i % 13 == 0 || i % 17 == 0) fs << endl;

}
fs.close();

cout << “Open the file in text mode, reposition using encoded\n”
<< “offsets obtained from previous calls to seekoff()” << endl;

fs.open(“tseek.data”, ios::in);
fb = fs.rdbuf();

// Exchange off[2] and off[3] so last seek will be backwards
off[4] = off[2]; off[2] = off[3]; off[3] = off[4];
pos[4] = pos[2]; pos[2] = pos[3]; pos[3] = pos[4];

for (j = 0; j < 4; ++j) {
(*fb).seekoff(off[j], ios::beg, ios::in);
fs >> i;
cout << “data at pos” << dec << setfill(' ') << setw(4) << pos[j]

<< “ is \”“ << setw(4) << i << ”\“ (encoded offset was 0x”
<< hex << setfill('0') << setw(8) << off[h] << “)” << endl;

if (i != pos[j]) return 37 + 10*j;
}
fs.close();
cout.fill(' ');
cout.setf(ios::dec, ios::basefield);

cout << “\nOpen the file in binary byteseek mode, reposition using\n”
<< “byte offsets calculated by the user program” << endl;

fs.open(“tseek.data”, “byteseek”, ios::in|ios::binary);
fb = fs.rdbuf();

for (j = 0, j < 4; ++j) {
off[j] = (*fb).seekoff(4*pos[j], ios::beg, ios::in);
fs >> i;

Chapter 4. USL I/O Streaming 129

cout << “data at pos” << setw(4) << pos[j] << “is \”“ << setw(4) << i
<< ”\“ (byte offset was ” << setw(10) << off[j] << “)” << endl;

if (i != pos[j]) return 77 + 10*j;
}
return 0;

}

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Define an Input Operator for a Class Type”
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Define an Input Operator for a Class Type
An input operator is predefined for all built-in C++ types. If you create a class type
and want to read input from a file or the standard input device into objects of that
class type, you need to define an input operator for that class’s type. You define an
istream input operator that has the class type as its second argument. For
example:
myclass.h

#include <iostream.h>

class PhoneNumber {
public:

int AreaCode;
int Exchange;
int Local;

// Copy Constructor:
PhoneNumber(int ac, int ex, int lc) :

AreaCode(ac), Exchange(ex), Local(lc) {}
//... Other member functions
};

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int tmpAreaCode, tmpExchange, tmpLocal;
aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;
aPhoneNum=PhoneNumber(tmpAreaCode, tmpExchange, tmpLocal);
return aStream;
}

The input operator must have the following characteristics:

v Its return type must be a reference to an istream.

v Its first argument must be a reference to an istream. This argument must be
used as the function’s return value.

130 IOC Library User’s Guide

v Its second argument must be a reference to the class type for which the operator
is being defined.

You can define the code performing the actual input any way you like. In the above
example, input is accomplished for the class type by requesting input from the
istream object for all data members of the class type, and then invoking the copy
constructor for the class type. This is a typical format for a user-defined input
operator.

Use the cin Stream in a Class Input Operator
Be careful not to use the cin stream as the input stream when you define an input
operator for a class type, unless this is what you really want to do. In the example
above, if the line

aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;

is rewritten as:
cin >> tmpAreaCode >> tmpExchange >> tmpLocal;

the input operator functions identically, when you use statements in your main
program such as cin >> myNumber. However, if the stream requesting input is not
the predefined stream cin, then redefining an input operator to read from cin will
produce unexpected results. Consider how the following code’s behavior changes
depending on whether cin or aStream is used as the stream in the input statement
within the input operator defined above:
#include <iostream.h>
#include <fstream.h>
#include “myclass.h”

int main(int argc, char *argv[]) {
PhoneNumber addressBook[40];
fstream infile(“address.txt”,ios::in);
for (int i=0;i<40;i++)

infile >> addressBook[i]; // does this read from “address.txt”
// or from standard input?

//...
}

In the original example, the definition of the input operator causes the program to
read input from the provided istream object (in this case, the fstream object infile).
The input is therefore read from a file. In the example that uses cin explicitly within
the input operator, the input that is supposedly coming from infile according to the
input statement infile >> addressBook[i] actually comes from the predefined stream
cin.

Display Prompts in Input Operator Code
You can display prompts for individual data members of a class type within the input
operator definition for that type. For example, you could redefine the PhoneNumber
input operator shown above as:
istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {

int tmpAreaCode, tmpExchange, tmpLocal;
cout << “Enter area code: ”;
aStream >> tmpAreaCode;
cout << “Enter exchange: ”;
aStream >> tmpExchange;
cout << “Enter local: ”;
aStream >> tmpLocal;
aPhoneNum=PhoneNumber(tmpAreaCode, tmpExchange, tmpLocal);
return aStream;
}

Chapter 4. USL I/O Streaming 131

You may be tempted to do this when you anticipate that the source of all input for
objects of a class will be the standard input stream cin. Avoid this practice wherever
possible, because a program using your class may later attempt to read input into
an object of your class from a different stream (for example, an fstream object
attached to a file). In such cases, the prompts are still written to cout even though
input from cin is not consumed by the input operation. Such an interface does not
prevent programs from using your class, but the unnecessary prompts may puzzle
end users.

Use Output Streams Other than cout, cerr, and clog
You can use the same techniques for output to other output streams as for output to
the predefined output streams. The only difference is that, for other output streams,
your program must define the stream. Assuming you have defined a stream
attached to a file opened for output, and have called that stream myout, you can
write to that file through its stream, by specifying the stream’s name instead of cout,
cerr or clog:
// assume the output file is associated with stream myout

int a,b;
myout << a << b;

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Output Operator for a Class Type”
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Define an Output Operator for a Class Type
An output operator is predefined for all built-in C++ types. If you create a class type
and want to write output of that class type to a file or to any of the predefined
output streams, you need to define an output operator for that class’s type. You
define an ostream output operator that has the class type as its second argument.
For example:
myclass.h

#include <iostream.h>

class PhoneNumber {
public:

int AreaCode;
int Exchange;
int Local;

// Copy Constructor:

132 IOC Library User’s Guide

PhoneNumber(int ac, int ex, int lc) :
AreaCode(ac), Exchange(ex), Local(lc) {}

//... Other member functions
};

ostream& operator<< (ostream& aStream, PhoneNumber aPhoneNum) {
aStream << “(” << aPhoneNum.AreaCode << “) ”

<< aPhoneNum.Exchange << “-”
<< aPhoneNum.Local << '\n';

return aStream;
}

The output operator must have the following characteristics:

v Its return type should be a reference to an ostream.

v Its first argument must be a reference to an ostream. This argument must be
used as the function’s return value.

v Its second argument must be of the class type for which the operator is being
defined.

You can define the code performing the actual output any way you like. In the
above example, output is accomplished for the class type by placing in the output
stream all data members of the class, along with parentheses around the area
code, a space before the exchange, and a hyphen between the exchange and the
local.

Class Output Operators and the Format State
You should consider checking the state of applicable format flags for any stream
you perform output to in a class output operator. At the very least, if you change the
format state in your class output operator, before your operator returns it should
reset the format state to what it was on entry to the operator. For example, if you
design an output operator to always write floating-point numbers at a given
precision, you should save the precision in a temporary on entry to your operator,
then change the precision and do your output, and reset the precision before
returning.

The ios::x_width setting determines the field width for output. Because ios::x_width
is reset after each insertion into an output stream (including insertions within class
output operators you define), you may want to check the setting of ios::x_width and
duplicate it for each output your operator performs. Consider the following example,
in which class Coord_3D defines a three-dimensional co-ordinate system. If the
function requesting output sets the stream’s width to a given value before the output
operator for Coord_3D is invoked, the output operator applies that width to each of
the three co-ordinates being output. (Note that it lets the width reset after the third
output so that, from the client code’s perspective, ios::x_width is reset by the output
operation, as it would be for built-in types such as float).
//Setting the output width in a class output operator

#include <iostream.h>
#include <iomanip.h>

class Coord_3D {
public:

double X,Y,Z;
Coord_3D(double x, double y, double z) : X(x), Y(y), Z(z) {}
};

ostream& operator << (ostream& aStream, Coord_3D coord) {
int startingWidth=aStream.width();
aStream << coord.X

#ifndef NOSETW
<< setw(startingWidth) // set width again

Chapter 4. USL I/O Streaming 133

#endif
<< coord.Y

#ifndef NOSETW
<< setw(startingWidth) // set width again

#endif
<< coord.Z;

return aStream;
}

int main(int argc, char *argv[]) {
Coord_3D MyCoord(38.162168,1773.59,17293.12);
cout << setw(17) << MyCoord << '\n'

<< setw(11) << MyCoord << endl;
return 0;
}

If you add #define NOSETW to prevent the two lines containing setw() in the output
operator definition from being compiled, the program produces the output shown
below. Notice that only the first data member of class Coord_3D is formatted to the
desired width.

38.16221773.5917293.1
38.16221773.5917293.1

If you do not comment out the lines containing setw(), all three data members are
formatted to the desired width, as shown below:

38.1622 1773.59 17293.1
38.1622 1773.59 17293.1

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Correct Input Stream Errors”
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes” on page 137
“Create Manipulators” on page 110

Correct Input Stream Errors
When an input statement is requesting input of one type, and erroneous input or
input of another type is provided, the error state of the input stream is set to
ios::badbit and ios::failbit, and further input operations may not work properly. For
example, the following code repeatedly displays the text: Enter an integer value: if
the first input provided is a string whose initial characters do not form an integer
value:

134 IOC Library User’s Guide

#include <iostream.h>
int main(int argc, char *argv[])

{
int i=-1;
while (i<=0)
{

cout << “Enter a positive integer: ” ;
cin >> i;

}
cout << “The value was ” << i << endl;
return 0;
}

This program loops indefinitely, given an input such as ABC12, because the
erroneous input causes the error state to be set in the stream, but does not clear
the error state or advance the get pointer in the stream beyond the erroneous
characters. Each time the input operator is called for an int (as in the while loop
above), the same characters are read in.

To clear an input stream and repeat an attempt at input you must add code to do
the following:

1. Clear the stream’s error state.

2. Remove the erroneous characters from the stream.

3. Attempt the input again.

You can determine whether the stream’s error state has been set in one of the
following ways:

v By calling fail() for the stream (shown in the example below)

v By calling bad(), eof(), good(), or rdstate().

v By using the void* type conversion operator (for example, if (cin)).

v By using the operator! operator (shown in the comment in the example below)

You can clear the error state by calling clear(), and you can remove the erroneous
characters using ignore(). The example above could be improved, using these
suggestions, as follows:
#include <iostream.h>

int main(int argc, char *argv[]) {
int i=-1;
while (i==-1) {

cout << “Enter an integer value: ”;
cin >> i;
while (cin.fail()) { // could also be “while (!cin) {”

cin.clear();
cin.ignore(1000,'\n');
cerr << “Please try again: ”;
cin >> i;
}

}
cout << “The value was ” << i << endl;
return 0;

}

The ignore() member function with the arguments shown above removes characters
from the input stream until the total number of characters removed equals 1000, or
until the new-line character is encountered, or until EOF is reached. This example
produces the output shown below in regular type, given the input shown in bold:

Chapter 4. USL I/O Streaming 135

Enter an integer value:
ABC12
Please try again:
12ABC
The value was 12

Note that, for the second attempt at input, the error state is set after the input of 12,
so the call to cin.fail() after the corrected input returns false. If another integer input
were requested after the while loop ends, the error state would be set and that
input would fail.

When you define an input operator of class type, you can build error-checking code
into your definition. If you do so, you do not have to check for error-causing input
every time you use the input operator for objects of your class type. Consider the
class definition for the PhoneNumber data type shown in myclass.h, and the
following input operator definition:
istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum)

{
int AreaCode, Exchange, Local;
aStream >> AreaCode;

while (aStream.fail()) eatNonInts(aStream,AreaCode);
aStream >> Exchange;

while (aStream.fail()) eatNonInts(aStream,Exchange);
aStream >> Local;

while (aStream.fail()) eatNonInts(aStream,Local);
aPhoneNum=PhoneNumber(AreaCode, Exchange, Local);
return aStream;
}

The eatNonInts() function in this example should be defined to ignore all characters
in the input stream until the next integer character is encountered, and then to read
the next integer value into the variable provided as its second argument. The
function could be defined as follows:
void eatNonInts(istream& aStream, int& anInt)

{
char someChar;
aStream.clear();
while (someChar=aStream.peek(), !isdigit(someChar))

aStream.get(someChar);
aStream >> anInt;
}

Now whenever input is requested for a PhoneNumber object and the provided input
contains nonnumeric data, this data is skipped over. Note that this is only a
primitive error-handling mechanism; if the input provided is 416 555 2p45 instead of
416 555 2045, the characters p45 will be ignored and the local is set to 2 rather
than 2045. A more complete example would check each input for the correct
number of digits.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121

136 IOC Library User’s Guide

“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Manipulate Strings with the strstream Classes”
“Create Manipulators” on page 110

Manipulate Strings with the strstream Classes
You can use the strstream classes to perform formatted input and output to arrays
of characters in memory. If you create formatted strings using these classes, your
code will be less error-prone than if you use the sprintf() function to create
formatted arrays of characters.

For new applications, you may want to consider using IString or IText rather than
strstream to handle strings. These classes provides a much broader range of
string-handling capabilities than strstream, including the ability to use mathematical
operators such as + (to concatenate two strings), = (to copy one string to another),
and == (to compare two strings for equality).

You can use the strstream classes to retrieve formatted data from strings and to
write formatted data out to strings. This capability can be useful in situations such
as the following:

v Your application needs to send formatted data to an external function that will
display, store, or print the formatted data. In such cases, your application, rather
than the external function, formats the data.

v Your application generates a sequence of formatted outputs, and requires the
ability to change earlier outputs as later outputs are determined and placed in the
stream, before all outputs are sent to an output device.

v Your application needs to parse the environment string or another string already
in memory, as if that string were formatted input.

You can read input from an strstream, or write output to it, using the same I/O
operators as for other streams. You can also write a string to a stream, then read
that string as a series of formatted inputs. In the following example, the function
add() is called with a string argument containing representations of a series of
numeric values. The add() function writes this string to a two-way strstream object,
then reads double values from that stream, and sums them, until the stream is
empty. add() then writes the result to an ostrstream, and returns OutputStream.str(),
which is a pointer to the character string contained in the output stream. This
character string is then sent to cout by main().
// Using the strstream classes to parse an argument list

#include <strstream.h>
char* add(char*);

int main(int argc, char *argv[])
{

cout << add(“1 27 32.12 518”) << endl;
return 0;

}

char* add(char* addString)
{

double value=0,sum=0;

Chapter 4. USL I/O Streaming 137

strstream TwoWayStream;
ostrstream OutputStream;
TwoWayStream << addString << endl;
for (;;)
{

TwoWayStream >> value;
if (TwoWayStream) sum+=value;
else break;

}
OutputStream << “The sum is: ” << sum << “.” << ends;
return OutputStream.str();

}

This program produces the following output:
The sum is: 578.12.

“Chapter 4. USL I/O Streaming” on page 93

“Combine Input and Output of Different Types” on page 126
“Use Predefined Streams” on page 96
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118
“Flush Output Streams with endl and flush” on page 119
“Parse Multiple Inputs” on page 121
“Open a File for Input and Read from the File” on page 122
“Open a File for Output and Write to the File” on page 125
“Associate a File with a Standard Input or Output Stream” on page 126
“Move through a file with filebuf Functions” on page 128
“Define an Input Operator for a Class Type” on page 130
“Define an Output Operator for a Class Type” on page 132
“Correct Input Stream Errors” on page 134
“Format Stream Output” on page 101
“Define Your Own Format State Flags” on page 107
“Create Manipulators” on page 110

138 IOC Library User’s Guide

Chapter 5. File Systems

The IBM Open Class File System Framework gives you access to all file system
objects such as volumes, directories, files, file contents and operations. Its interface
provides classes that represent physical file system objects and allows you to
manipulate those objects.

Classes from IBM Open Class File System Framework are only supported
in z/OS UNIX System Services. They are not supported in PDS environment.

Some typical tasks you can perform using the File System Framework are:

v Creating, moving, copying, deleting, locating, and otherwise manipulating file
system objects

v Manipulating and parsing path names in a portable manner

v Accessing the attributes of files, directories, and volumes

v Accessing the contents of volume, directory, and file objects

v Iterating through directories and volumes

File System Framework functions are organized into six broad categories of
classes:

v File System Entities

v Path Names and Path Name Parsers

v Data Accessors

v File System Iterators

v File System Movers and Copiers

v File System Exceptions

“File System Entities” on page 140
“Path Names and Path Name Parsers” on page 149
“Data Accessors” on page 153
“File System Iterators” on page 156
“File System Movers and Copiers” on page 158
“Thread Safety” on page 161
“File System Exceptions” on page 163

“Instantiate the File System Classes” on page 141
“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159
“Customize File System Operations” on page 161
“Get and Set Information about File System Entities” on page 146
“Work with Path Names” on page 152

© Copyright IBM Corp. 1996, 2001 139

File System Entities
Overview of File System Entities
The File System Framework enables you to use surrogate instances called file
system entities to access physical objects that reside on hardware or virtual
devices. These surrogate objects are instances of IFileSystemEntity and its
subclasses: IFile, IFifoFile, IDirectory, IVolume and INativeObject.

v IFileSystemEntity is the base class for all file system entities.

v IFile provides a surrogate object for a file.

v IFifoFile provides a surrogate object for a FIFO file.

v IDirectory provides a surrogate object for a file system directory.

v IVolume provides a surrogate object for a file system volume.

v INativeObject provides a surrogate object for an iSeries native object,
such as a program object (*PGM) or a data management file (*FILE).

The following figure shows the relationship of surrogate instances to physical
objects:

aVolume

aDirectory

sameDirectory

aFile

aFifoFile

aNativeObject 400

Multiple surrogate objects can refer to the same physical object.

The IFileSystemEntity class defines the common protocol for file system entities.
IFile, IDirectory, IVolume, and INativeObject derive from IFileSystemEntity and
implement protocols specific to each kind of entity.

Files
An IFile instance is a surrogate entity that maps to a physical file. You locate and
create IFile instances using the IFile constructors and IDirectory’s lookUp and
createFile methods. You can also delete the physical file entity by using a deleteSelf
method.

140 IOC Library User’s Guide

FIFO File
An IFifoFile is a surrogate entity that maps to a physical First-In First-Out (FIFO)
file. You create a FIFO file by using a mkfifo(path, mode) command, where path is
the pathname of the FIFO file being created, and mode is the mode with which the
FIFO file is to be opened.

Directories
An IDirectory instance is a surrogate entity that maps to a physical directory. With it,
you can look up an entity within a directory, create a new directory, create a new
file, delete the contents of a directory, and delete the directory itself.

Volumes
IVolume derives from IDirectory because it represents the root directory of a
volume. You can treat an IVolume instance much as you would treat an IDirectory
instance. IVolume also has several methods you can use to access attributes that
are specific to volumes.

Native Objects
An INativeObject instance is a surrogate entity that maps to an iSeries native
object. You locate INativeObject instances using IDirectory’s lookUp. INativeObject
has several ways of accessing iSeries objects attributes, including methods to
access the iSeries object type.

Attributes
Types of attributes for a file system object include:

v Name

v Creation date and time

v Modification date and time

In addition, IFile has a size attribute which you access using the size and setSize
functions.

IFileSystemEntity implements functions for accessing the attributes that are
common to all file system objects. IDirectory, IVolume, IFile, and INativeObject also
implement accessors for attributes that are specific to their corresponding physical
file system objects. For example, IFile instances manage end-of-file information
stored as an attribute. They also manage storage of the file name, creation date,
modification date, file size, and entity type (which in this case is always file).

“Chapter 5. File Systems” on page 139

“Instantiate the File System Classes”
“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159
“Get and Set Information about File System Entities” on page 146
“Work with Path Names” on page 152

Instantiate the File System Classes
Instantiate a File System Entity from a Host-Specific Path Name
If you know the host system’s path name for the object, you can use an entity

Chapter 5. File Systems 141

constructor that takes the path name as an argument. For example, the following
code constructs an IFile for the file for which the host-specific path name is
specified by argv[1]:
IFile myFile(IHostPathName(argv[1]));

If your path name is in the format for a different operating system, you can specify
an object to use to parse the path:
IFile myFile(argv[1], IFile::kMustExist,

IUnixPathNameParser());

The code in the above example will fail if there is no file at the location specified by
argv[1].

The following code will create a directory named xyz in the subdirectory named sub:
IDirectory dir = IDirectory::current();
IDirectory newDir = dir.createDirectory(“sub/xyz”,

IUnixPathNameParser());

If sub does not exist, createDirectory will automatically create it.

If you do not specify a parser to use for a host-specific path that is not in the
current host’s format, one of the following will occur when the path is used:

v If the path is illegal for the current host’s format, you will get an IInvalidName
exception.

v If the path happens to be legal in the host’s format, it might be interpreted
differently than you expect. For example, if you create a file using the path
“foo\bar” on a UNIX system, the constructor may create one directory called
“foo\bar” since the backslash (\) is a valid character in a UNIX file or directory
name.

In the z/OS UNIX shell, if you create a directory specifying the name
″foo\bar″, a directory named foobar″ is created.

Instantiate a File System Entity from a Portable Path Name
If you already have an IPathName object, you can use it to construct an entity
instance that represents the physical object at the location specified by the path.
You simply use IPathName in the entity instance’s constructor:
IPathName aFullPath =;
IFile myFile(aFullPath);

If you have an IDirectory instance for the directory in which you wish to create an
entity, you can also use the IDirectory methods createFile and createDirectory.

To create a file named “abc”, you do this:
IDirectory aDirectory =;
IFile newFile = aDirectory.createFile(“abc”);

The following code shows how to specify a subdirectory relative to the current
directory. In this case the subdirectory is named “subdirectory”:
// use path name relative to current directory
IFile myFile(IPathName(“subdirectory”));

If you have a partial path name relative to a known directory, you can use
IDirectory::lookUp:
IPathName aPartialPath =;
IFile myFile = aDirectory.lookUp(aPartialPath);

142 IOC Library User’s Guide

Instantiate a File System Entity from Another Instance of the Same Entity
Class
You can make a copy of a file system entity by using the entity class’ copy
constructor. In each of the following examples, both originalEntity and
duplicateEntity will point to the same physical object on disk:
IFile originalEntity(pathName);
IFile duplicateEntity(originalEntity);

IDirectory originalEntity(pathName);
IDirectory duplicateEntity(originalEntity);

IVolume originalEntity(hostPathName);
IVolume duplicateEntity(originalEntity);

IFileSystemEntity originalEntity(pathName);
IFileSystemEntity duplicateEntity(originalEntity);

Use an Instance of IFileSystemEntity to Represent a File, Directory or Volume
Instantiate and use subclasses of IFileSystemEntity, such as IFile, when you need
to manipulate a specific type of file system object. If you only need to represent file
system entities generically and the functions provided by IFileSystemEntity are
sufficient, you can use an instance of IFileSystemEntity to represent a file, directory
or volume:
IFileSystemEntity fileEntity(filePathName);
IFileSystemEntity directoryEntity(dirPathName);
IFileSystemEntity volumeEntity(volHostPathName);

If you try to manipulate an IFileSystemEntity instance in a way that is inconsistent
with the type of physical object which the entity represents, you will get an
exception. For example:
IFileSystemEntity myEntity = IFile(filename);
...
IDirectory myDirectory = myEntity; // WRONG: myEntity

// is not a directory!
// An exception of type
// IEntityTypeMismatch is thrown.

“Chapter 5. File Systems” on page 139
“File System Entities” on page 140
“Path Names and Path Name Parsers” on page 149
“File System Exceptions” on page 163

“Create and Delete Files and Directories”
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159
“Customize File System Operations” on page 161
“Get and Set Information about File System Entities” on page 146
“Work with Path Names” on page 152

Create and Delete Files and Directories
IFile and IDirectory inherit creation options from IFileSystemEntity. You can use
these options to specify creation behavior when instantiating an IFile or IDirectory
object.

To automatically create a file or directory if it does not already exist, use the
kCreateIfNeeded option:

Chapter 5. File Systems 143

IFile myFile(pathName, IFile::kCreateIfNeeded);
IDirectory myDir(pathName, IDirectory::kCreateIfNeeded);

To create a new file or directory only where one does not already exist, use the
kCreateOnly option (Note: this will throw an IAlreadyExists exception if the file
already exists):
IFile myNewFile(pathName, IFile::kCreateOnly);
IDirectory myNewDir(pathName, IDirectory::kCreateOnly);

To replace an existing file or directory, or create a new one if it does not already
exist, use the kReplaceExisting option:
IFile myNewFile(pathName, IFile::kReplaceExisting);
IDirectory myNewDir(pathName, IDirectory::kReplaceExisting);

Create a File or Directory and Intermediate Subdirectories
Except for kMustExist, the entity creation options will also cause any missing
intermediate directories to be created. The following code will create the file file.txt if
it does not already exist. It will also create the intermediate directories abc and xyz
if needed:
IFile myFile(IHostPathName(“abc/xyz/file.txt”),

IFile::kCreateIfNeeded, IUnixPathNameParser());

The following code will create a directory named xyz in the subdirectory named sub.
If sub does not exist, createDirectory will automatically create it too:
IDirectory dir = IDirectory::current();
IDirectory newDir = dir.createDirectory(“sub/xyz”,

IUnixPathNameParser());

Delete a File or Directory
IFile and IDirectory inherit the deleteSelf member function from IFileSystemEntity.

To delete a physical file, call its deleteSelf member function:
IFile fileToKill(pathName);
fileToKill.deleteSelf();

To delete a physical directory, call its deleteSelf member function. By default,
deleteSelf will only delete the directory if it is entirely empty. If the directory is not
empty, deleteSelf will throw the exception IMustBeEmpty.
IDirectory dirToKill(pathName);
dirToKill.deleteSelf();

If the directory is not empty and you want to delete it and all of its contents, pass
true to deleteSelf, overriding the default value (false) of deleteSelf’s deleteChildren
parameter.
dirToKill.deleteSelf(true); // Deletes all contents too!

If any of the entities in the directory or any of their children cannot be deleted,
deleteSelf deletes as many as it can and then throws the first exception that it
encountered.

After deleteSelf is called, the object becomes invalid (the object’s valid function will
return false). The object itself is not destroyed.

144 IOC Library User’s Guide

Delete all Directory Contents
To recursively delete all the contents of a directory, but not the directory itself, call
deleteAllContents. This method attempts to delete each member of the directory
recursively.
aDirectory.deleteAllContents();

If any of the entities in the directory or any of their children cannot be deleted,
deleteAllContents deletes as many as it can and then throws the first exception that
it encountered.

Create Temporary Files and Directories
To create a directory or a file for storing temporary data, use
IDirectory::createTemporary or IFile:createTemporary. These functions will create a
new directory or a new file in the system-specific temporary directory. There are two
versions of each of these functions: one to specify the name of the temporary entity,
the other to generate the name automatically.
// create a 1K file with given name
IFile tempFile(IFile::createTemporary(fileName, 1024));

// create a zero-length file with given name
IFile tempFile(IFile::createTemporary(fileName));

// create a zero-length file with unique name
IFile tempFile(IFile::createTemporary());

// create a directory with given name
IDirectory tempDir(IDirectory::createTemporary(dirName));

// create a directory with unique name
IDirectory tempDir(IDirectory::createTemporary());

Temporary directories and files created in this way are not automatically deleted
when their IDirectory or IFile instance goes out of scope. Nor are temporary files
automatically deleted when they are closed. These entities are only “temporary” in
the sense that they live in the system’s temporary directory and that they are not
guaranteed to survive a system reboot. You are still responsible for deleting a
temporary IDirectory or IFile when you are finished using it.

You can call the temporary function on a file or directory entity to determine if the
entity was constructed using the createTemporary function.

“Chapter 5. File Systems” on page 139
“File System Entities” on page 140
“Path Names and Path Name Parsers” on page 149
“File System Exceptions” on page 163

“Instantiate the File System Classes” on page 141
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159
“Customize File System Operations” on page 161
“Get and Set Information about File System Entities” on page 146
“Work with Path Names” on page 152

Chapter 5. File Systems 145

Get and Set Information about File System Entities
Get a Path Name from a File System Entity
To get the full path name from an IFileSystemEntity object, call its path function:
IPathName pathName = anEntity.path(); // get full path of entity

To get the full host-specific path name for the entity, call the hostPath function. You
can pass in an optional path name parser to use in constructing the host-specific
path name. For example, if you specifically want a host-specific path name in
Windows format, pass in an instance of IWin32PathNameParser. If you do not
explicitly specify a path name parser, you will get the parser that matches the path
format of the host operating system.
IHostPathName hostPathName(anEntity.hostPath());
cout << “Path name in host path format is ” << hostPathName;

IHostPathName winPathName(anEntity.hostPath(IWin32PathNameParser()));
cout << “Path name in Windows path format is ” << winPathName;

Access the Attributes of Files, Directories and Volumes
An attribute common to all types of entities is the entity name. To get and set the
name of an entity call the name and setName functions:
IFileName entityName = anEntity.name(); // get the name
anEntity.setName(IFileName(“newname”)); // set the name

Note that IFileName is a typedef for IText.

Another attribute common to all types of entities is the time of the most recent
modification to the physical entity. You can retrieve the modification timestamp of
the physical entity by calling modificationTime:
ITimeStamp modTime = anEntity.modificationTime();

You can also determine if a single file system entity object was created with either
the IFile::createTemporary function or IVolume::createTemporary function. This does
not check to see whether the physical object resides in any particular system
temporary directory; it returns true if the entity instance was specifically created
using one of those two static functions.
if (anEntity.temporary()) {

// it's a temporary entity
}

Rename a File System Entity
To rename an entity, call the setName function:
anEntity.setName(newName);

You can also rename an entity by moving it.

Compare File System Entities
IFileSystemEntity’s equality (==) and inequality operators (!=) test whether two
entity objects point to the same physical object on the disk. Two objects that refer to
the same physical object will compare equal, even if they were constructed from
different path names:
// construct a pathname relative to current dir
IHostPathName name1(“data\settings.zzz”);

// construct an absolute pathname
IHostPathName name2(“/program/data/settings.zzz”);

146 IOC Library User’s Guide

// set the current directory
IDirectory::setCurrent(IDirectory(“/program”,

IUnixPathNameParser());

// Compare the file entities
IFile file1(name1, IFile::kMustExist, IWin32PathNameParser());
IFile file2(name2, IFile::kMustExist, IUnixPathNameParser());
if (file1 != file2) {

// major problem
}

Test the Identity of a File System Entity
You can test whether an entity is an instance of a particular class with the function
IFileSystemEntity::isA. Pass an IFileKind representing the desired class, and isA
returns true if the entity belongs to that class. Each entity class declares a constant
named kKind that represents the class type.

As an example, the following code will print out the names of all of the directories
that reside inside myDirectory.
for (IDirectoryIterator anEntity(myDirectory); anEntity; anEntity++) {

if (anEntity->isA(IDirectory::kKind)) {
cout << anEntity->name() << endl;

}
}

Test the Validity of a File System Entity
You can call a file system entity’s valid function to determine if an entity instance
represents a real file system object:
if (IFile(IPathName(“example”)).valid()) {

cout << “the file exists”;
}

The valid function returns false after you call deleteSelf or any other function that
deletes the physical object or invalidates the entity:
IFile aFile(IPathName(“example”));
aFile.deleteSelf();

// the following statement will print “invalid”
cout << “'example' is ” <<

(aFile.valid() ? “valid” : “invalid”);

The valid function also returns false for entity instances created using the default
constructor, because they do not refer to any physical object until assigned a good
value:
IFile someFile;

// The following statement will print “invalid”
// because someFile doesn't refer to a physical object.
cout << “someFile is ” <<

(someFile.valid() ? “valid” : “invalid”);

someFile = IFile(IPathName(“goodfile”));

// The following statement will print “valid” if the
// file 'goodfile' exists.
cout << “someFile is ” <<

(someFile.valid() ? “valid” : “invalid”);

However, the valid function will still return true if something else, such as another
process, deletes the physical object to which the entity instance points. If your
program is running in a multithreaded situation where there is a possibility that

Chapter 5. File Systems 147

another thread or process has deleted a file, call the connected function to
determine if an entity’s physical file system object still exists:
if (aDirectory.connected()) {

// directory is still here
}

The connected function goes out to the disk or network to verify that the entity still
exists. It can be considerably slower that calling the valid function.

Determine the State of a Volume
IVolume provides several state access functions which you can use to get
information about a volume. Use the online, remote and removable functions to find
out whether a volume is online or offline, whether it is remote or local, and whether
or not it is a removable-media volume:
IVolume volume(IHostPathName(“C:”),

IWin32PathNameParser());
IVolume::EState online = volume.online();
IVolume::EState remote = volume.remote();
IVolume::EState removable = volume.removable();

These functions return one of three values. IVolume::EState defines three values:
kFalse, kTrue and kUnknown. You can use the state value returned by any of the
above functions as if the state value was boolean, but the unknown status will be
treated as true. This is the more conservative assumption — if you don’t know
whether a volume is remote, your code will assume that it is.

Determine the Amount of Free Space on a Volume
Call the freeSpace function to determine the amount of space available on a
particular volume:
IFileSize freeSpace = aVolume.freeSpace();

IFileSize is a class that represents a 64-bit signed integer. You can perform all the
standard mathematical operations on an IFileSize object, as if it were an integer
value.

You can also find out the total storage space for a particular volume by calling the
totalSpace function. For example, you could calculate the percentage of total
storage space used on a device:
IFileSize percentUsed =

100*(1-aVolume.freeSpace()/aVolume.totalSpace());

“Chapter 5. File Systems” on page 139
“File System Entities” on page 140
“Path Names and Path Name Parsers” on page 149
“File System Exceptions” on page 163

“Instantiate the File System Classes” on page 141
“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159
“Customize File System Operations” on page 161
“Work with Path Names” on page 152

148 IOC Library User’s Guide

Path Names and Path Name Parsers
Overview of Path Names and Path Name Parsers
A path name specifies the physical location of an object on a mounted volume. The
File System Framework provides classes which enable you to specify path names
in a portable manner, or in a host-specific way. You use path names to:

v Create a file system entity

v Retrieve a file system entity based on a path name

v Get a path name based on the file system entity

v Store and manipulate path names across platforms in a portable manner

The classes associated with path names and path name parsers are as follows:

v ICompoundName

v IPathName

v ICompoundNameParser

v IUnixPathNameParser

v IWin32PathNameParser

v IOS400PathNameParser

You can obtain a file system entity by providing the path name of the entity you
want, and you can get the path name of an entity by providing the file system entity
itself. The file system gives you two ways to use path names with file system
entities:

v You can store path names as strings in the format used by a particular operating
system.

v You can store and manipulate path names in a portable manner.

For z/OS, the definitions of host-specific path names below refer to UNIX
System Services path names only.

Host-Specific Path Names
Host-specific paths are simple strings that store path names in the format used by a
particular operating system. Some examples of host-specific path names are as
follows:

Operating System Example Path Name

/tmp/file.txt
files/new/readme.txt

C:\temp\file.txt
files\new\readme.txt

Path Name Parsers
Host-specific path names are not portable.

However, you can port pathnames between all of these
platforms; they all use the UNIX-style format.

For example, if you try to use a Windows-style path name on a UNIX system, you
will get an exception. The File System Framework provides a way to avoid this
problem. All methods that take a host-specific path as a parameter also take an
optional ICompoundNameParser parameter, which you can use to specify a parser

Chapter 5. File Systems 149

for the path name. If you do not explicitly specify a parser, you will get the parser
that matches the path format of the host operating system.

The path name parsers provided in this release of IBM Open Class library are as
follows:

Class Description

IUnixPathNameParser A concrete class that parses and formats
UNIX-style file system path names.

IWin32PathNameParser A concrete class that parses and formats
Windows-style file system path names.

IOS400PathNameParser A concrete class that parses and formats OS/400
data management path names.

Since classes from IBM Open Class File System Framework are only
supported in z/OS UNIX System Services, the default path name parser on the
z/OS platform is IUnixPathNameParser.

Portable Path Names
Although host-specific path names are easy to use, you sometimes need to store or
manipulate a path name in a portable manner. For example, a text document might
need to include the relative path to an embedded graphic file. The class IPathName
provides this portable functionality.

IPathName, derived from ICompoundName, represents full or partial paths to file
system entities. It allows you to specify file system entities via their absolute or
relative path names.

You can also construct an IPathName from a IDirectory instance and a partial path
relative to that directory. The partial path can be specified either as an
IHostPathName or as another IPathName.

iSeries Path Names
The iSeries provides two ways to name objects. The traditional way of naming
objects on the iSeries is by using Data Management (DM) naming conventions. In
DM, all objects exist in libraries. For example a C++ source member would exist in
file“ QCPPSRC” and file “QCPPSRC” in turn would exist in a library, for example
library “TEST”. So given C++ source member “HELLO1” in file “QCPPSRC” in
library “TEST”, the DM host path would be:
TEST/QCPPSRC.HELLO1

or (library name)/(object name).(member name).

However, this same DM Host Path can be specified using a UNIX path name. On
the iSeries, a UNIX path name is called an Integrated File System (IFS) path name.
The equivalent IFS Host Path for the C++ source member above would be:
/QSYS.LIB/TEST.LIB/QCPPSRC.FILE/HELLO1.MBR

In order to deal with these two different Host Path naming conventions, there are
two different path name parsers. IUnixPathNameParser, handles the IFS Host Path
naming (UNIX) conventions; whereas IOS400PathNameParser, handles the DM
Host Path naming conventions. The default path name parser on the iSeries is
the IUnixPathNameParser.

150 IOC Library User’s Guide

On the iSeries, the IFS root directory “/”, is the base from which several other file
systems can be accessed. The iSeries DM file system starts at the IFS directory
“/QSYS.LIB”. In DM each object has an object type. The following table shows
some DM object names and their object types:

DM Object Names DM Object Types

libraries *LIB

source files *FILE

source file members *MBR

program objects *PGM

module objects *MODULE

From the table above, you can begin to see how a DM path name is converted to
the equivalent IFS path name. Given our C++ source member “HELLO1”, we begin
at the DM root in IFS “/QSYS.LIB”. Since “HELLO1”’s file exists in library “TEST”,
we take library name, and append the object type *LIB to get:
“/QSYS.LIB/TEST.LIB”

The source file for “HELLO1” is “QCPPSRC” which is an object of type *FILE, thus
the IFS path name becomes:
“/QSYS.LIB/TEST.LIB/QCPPSRC.FILE”

The IOC class IPathName, represents the path to a file system entity. IPathName
has several constructors, one of them takes a Host Path, and optionally a path
name parser. The default path name parser on the iSeries is IUnixPathNameParser.
The object hello1IFS, is constructed using a UNIX or IFS Host Path:
IPathName hello1IFS(“/QSYS.LIB/TEST.LIB/QCPPSRC.FILE/HELLO1.MBR”);

The equivalent path using a DM Host Path is:
IPathName hello1DM(“TEST/QCPPSRC.HELLO1”, IOS400PathNameParser());

If you compare the following paths:
if (hello1DM == hello1IFS) {
cout << “DM path = IFS path \n”; } else {
cout << “DM path NOT = IFS path \n”; }

they compare equal.

Unlike other path name parsers, the IOS400PathNameParser has a constructor,
which takes an iSeries object type. The following example represents the path to
HELLO1 module object in library TEST:
IPathName hello1Module(“TEST/HELLO1”, IOS400PathNameParser(“*MODULE”));

which is equivalent to the IFS path:
IPathName hello1ModuleIFS(“/QSYS.LIB/TEST.LIB/HELLO1.MODULE”);

“Chapter 5. File Systems” on page 139

“Instantiate the File System Classes” on page 141
“Work with Path Names” on page 152

Chapter 5. File Systems 151

“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159
“Get and Set Information about File System Entities” on page 146

Work with Path Names
Instantiate Host-Specific Path Names and Path Name Parsers
Use instances of IHostPathName, together with an appropriate path name parser, to
represent file, directory or volume path names in the path name format of a
particular operating system. The following example constructs an IHostPathName
object from a UNIX path name and then constructs an IDirectory object using that
host-specific path name:
IHostPathName unixPath(“/usr/local/bin”);
IDirectory localBin(unixPath, IUnixPathNameParser());

Instantiate a Portable Path Name from a Host-Specific Path Name
Although host-specific path names are easy to use, you sometimes need to store or
manipulate a path name in a portable manner. The class IPathName, derived from
ICompoundName, provides this portable functionality. IPathName represents full or
partial paths to file system entities and allows you to specify file system entities via
their absolute or relative path names.

You can instantiate IPathName directly from a host-specific path name by specifying
an path name parser or by using the system’s default parser:
// specify a parser
IPathName aPath(“abc/xyz”, IUnixPathNameParser());

// use the default parser
IPathName aPath(“abc/xyz”);

You can also construct an IPathName from a IDirectory instance and a partial path
relative to that directory. The partial path can be specified either as an
IHostPathName or as another IPathName:
// partial path is IHostPathName
IPathName aPath(aDirectory, “abc/xyz”, IUnixPathNameParser());

// partial path is IPathName
IPathName aPathName(“abc/xyz”, IUnixPathNameParser());
IPathName aPath(aDirectory, aPathName);

Append and Retrieve Path Name Components
To append all the components from one path onto the end of another, use the
append function. After this code executes, xyz will contain the path
one/two/three/four/five:
IPathName xyz(“one/two/three”, IUnixPathNameParser());
IPathName abc(“four/five”);
xyz.append(abc);

To append a single component to a path name, use the appendComponent
function. After this code executes, abc will contain the path one/two/three:
IPathName abc(IHostPathName(“one/two”),

IUnixPathNameParser());
abc.appendComponent(IText(“three”));

To retrieve the individual components of a path name, use the functions
componentAt and lastComponent:

152 IOC Library User’s Guide

IPathName abc(“one/two/three”, IUnixPathNameParser());

// will return “two”
IText compTwo = abc.componentAt(2);

// will return “three”
IText lastComp = abc.lastComponent();

Indices start at one, just as in the Collections classes.

“Chapter 5. File Systems” on page 139
“File System Entities” on page 140
“Path Names and Path Name Parsers” on page 149
“File System Exceptions” on page 163

“Instantiate the File System Classes” on page 141
“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159
“Customize File System Operations” on page 161
“Get and Set Information about File System Entities” on page 146

Data Accessors
Data access can be provided through the USL I/O Stream Library or through the
C++ Standard I/O Stream Library. To use the C++ Standard I/O Stream Library you
must define the __IOC_ANSI_STREAM macro. By default, IBM Open Class
Streaming classes uses the USL I/O Stream Library.

IFileIOStream is a stream class that can be constructed from an IFile. It allows
iostream-based code to interoperate with the file system API. To perform I/O
operations, you use the functions inherited from iostream. Use IFileIOStream when
you need compatibility with the standard iostream classes or access to legacy data
that is stored in files. You use this class almost exactly the same way you would the
standard fstream class, except that the constructor accepts an IFile argument.

IDataStream is the Open Class stream for C++ objects. Use IDataStream to store
persistent objects, Open Class documents, and other object-based data.

There are two types of constructors for both of the stream classes. The first type
takes two int arguments, the second takes the same two int arguments as well as
an ICCSId. The two int arguments, modeForMe and modeForOthers; and the
ICCSId argument, id, determine how the file is opened. The first int argument
specifies the type of access that you want to have to the stream yourself, plus any
special behavior that you want when the file is opened. The second int argument
specifies the access that you want to allow for others who try to open the file when
you already have it open.

The int values for both of these arguments are constructed by combining the
open_mode constants from the ios class or the EOpenMode constants from the
IFile class. The constants that specify access levels are as follows:

Chapter 5. File Systems 153

Constant Description

0 Allows no access to the file. This is the default value of the
modeForOthers argument.

in Allows read access. The file can be read but no

out Allows writing to the file.

There are a few other open-mode constants that specify special behavior when you
open or write to the file. These constants have no effect if they are added into the
modeForOthers argument.

Constant Description

app Causes a seek to the end immediately after the open, but
not before each write.

ate Causes a seek to the end immediately after the open, but
not before each write.

trunc Truncates an existing stream when opening it.

The ICCSId argument specifies a Coded Character Set IDentifier (CCSID). A
CCSID identifies a coded character set, code page, and encoding scheme. On
systems like the iSeries, files can be tagged with a CCSID, allowing the operating
system to automatically translate the data in a file stored in a particular CCSID, to
the CCSID of the job or process, or to a CCSID specified by the programmer. For
example, the data in a file could be stored in an ASCII CCSID, but the application
requires all the data to be viewed as EBCDIC. In this case, you could ask the file
to be converted to the job CCSID, or specify the CCSID you want the file translated
into.

Both IDataStream and IFileIOStream keep track of the end of the file, also called
end of stream.

“File System Entities” on page 140
“Chapter 5. File Systems” on page 139
“IBM Open Class Streaming Classes” on page 79
“Data Streams” on page 81
“Chapter 4. USL I/O Streaming” on page 93

“Instantiate a Data Stream” on page 81

Access File Contents
Set Stream Access Permissions
This example opens an existing file for shared reading and streams in the contents.
The second IFile::in in the constructor’s argument list allows other processes to
open the file for concurrent reading.
IFile theFile(pathName);
IDataStream* stream =

theFile.createStream(IFile::in, IFile::in);
ISomeDataType* fileContents = NULL;
::readObject(fileContents, *stream);
delete stream;

154 IOC Library User’s Guide

Access File Contents Using C++ Streams
IFileIOStream allows you to access the data within a file and derives from the
standard library class iostream, providing interoperability with C++ iostreams.

You can create an IFileIOStream using an IFile instance to specify the file whose
contents you want to stream:
IFile aFile(pathName, IFile::kCreateIfNeeded);
IFileIOStream aStream(aFile);
aStream << “I'm writing this string to the stream.” << endl;

You can also use a full or partial path name that specifies the file:
IFileIOStream aStream(hostPathName, modeForMe, modeForOthers,

IUnixPathNameParser());

Access File Contents Using Open Class Streams
IDataStream is the standard Open Class stream for C++ objects. To access a file’s
contents with an IDataStream object, call the file entity’s createStream function. The
createStream function returns a pointer to an IDataStream. You are responsible for
deleting the pointer when you are finished with the stream:
IFile aFile(pathName);
IDataStream* stream = aFile.createStream(IFile::in +

IFile::out + IFile::trunc);
::writeObject(fileContents);
cout << “streaming out completed.” << endl;
delete stream;

A file remains open until the stream’s close function is called or until the
IFileIOStream instance is destroyed. If you allocate one of these instances on the
heap, you take responsibility for destroying the instance (and thus closing the file)
when you are done.

As you write out a file stream, the end-of-file marker moves forward. To move the
stream marker more efficiently, use IFileIOStream::seek to move the marker forward
to the position you want.

When you move the end-of-file marker forward, the results depend on the host file
system. Because your code might be used on different file systems, you need to
code as though you risk running out of file space each time you move the
end-of-file marker.

The following code shows a file being opened and translated into the job CCSID.
The int argument modeForMe has the ios::text flag set, which causes the translation
from the file CCSID to the job CCSID.
IPathName textMessageFilePath(“/tmp/afile.txt”);
IFile textMessageFile(textMessageFilePath);
IFileIOStream textStream(textMessageFile, ios::in + ios::text);

In this second example, we ask for the same file to be opened with a specific
CCSID, in this case CCSID 37 (on the iSeries, this CCSID represents an EBCDIC
U.S. English code page).
IPathName textMessageFilePath(“/tmp/afile.txt”);
IFile textMessageFile(textMessageFilePath);
ICCSId ccsid37(IText(“37”));
IFileIOStream textStream2(textMessageFile, ccsid37, ios::in + ios::text);

“File System Entities” on page 140

Chapter 5. File Systems 155

“Path Names and Path Name Parsers” on page 149
“Data Accessors” on page 153
“File System Exceptions” on page 163

“Instantiate the File System Classes” on page 141
“Create and Delete Files and Directories” on page 143
“Access Directory and Volume Contents”
“Copy and Move Files and Directories” on page 159
“Customize File System Operations” on page 161
“Get and Set Information about File System Entities” on page 146
“Work with Path Names” on page 152

File System Iterators
The File System Framework provides three classes that you can use for iterating
through directories and volumes:

v IDirectoryIterator iterates over the files and directories contained within a single
directory or an entire directory hierarchy.

v IRootDirectoryIterator iterates over all topmost directories on all mounted
volumes.

v IVolumeIterator iterates over all the local disks and network volumes that are
currently mounted.

IVolumeIterator returns an IVolume for each disk connected to the
system and for each connected network drive. Additionally, because each volume is
represented as a root directory, IRootDirectoryIterator will return the same entities
as IVolumeIterator.

There is only one root directory (“/”) on UNIX systems.

“Chapter 5. File Systems” on page 139

“Access Directory and Volume Contents”
“Work with Path Names” on page 152

Access Directory and Volume Contents
Look Up Entities with the IDirectory::lookUp Function
IDirectory provides the lookup function lookUp. This function will search in the
directory for an entity with a specified name. If you pass a simple file name to
lookUp, it will look for an entity with that name in the physical directory represented
by the IDirectory object:
IFile myFile = aDirectory.lookUp(“filename”);

If you know the name of an entity and the directory in which it is located, use the
method IDirectory::lookUp to find it. For example, to find a directory named abc
inside a directory that is specified by the variable aDirectory, use this code:
IDirectory myDirectory = aDirectory.lookUp(“abc”);

156 IOC Library User’s Guide

If you pass in a partial path, lookUp will look for an entity in the specified
subdirectory of the IDirectory. The following code will look for a subdirectory named
direct and then for a file inside it named filename.
IFile aFile = dir.lookUp(“direct/filename”,

IUnixPathNameParser());

Look Up Entities with a Directory Iterator
Another way to find an entity is to search through an entire directory hierarchy or
through all of the entities in a particular directory. This type of search is performed
with iterators.

The following example searches through the directory tree under aDirectory for a
file named “filename”. Passing true in the second argument to the IDirectoryIterator
makes the iteration recursive.
IDirectory aDirectory(...);
...
IFile myFile;
for (IDirectoryIterator anEntity(aDirectory, true);

anEntity;
anEntity++)

{
if (anEntity->isA(IFile::kKind) &&

anEntity->name() == “filename”)
{

myFile = *anEntity;
break;

}
}

Iterate over the Contents of a Directory
IDirectoryIterator iterates over the contents of a single directory or an entire
directory tree. The bool recursive argument to the constructor determines whether
or not the iteration is recursive. Because directories can contain other directories as
well as files, the results of iteration are often heterogeneous. The following simple
example will print the names of all files in the current directory:
for (IDirectoryIterator anEntity(IDirectory::current());

anEntity;
anEntity++)

{
if (anEntity->isA(IFile::kKind)) {

cout << anEntity->name() << endl;
}

}

Iterate over the Contents of a Volume
IVolume derives from IDirectory, so you can iterate over all the directories on a
particular volume by creating an IDirectoryIterator object to which you pass an
IVolume object during construction. Passing true in the second argument to the
IDirectoryIterator constructor makes the iteration recursive.
IVolume theVolume(IHostPathName(“/”),

IUnixPathNameParser());
IDirectory dir;

for (IDirectoryIterator anEntity(theVolume, true);
anEntity;
anEntity++)

{
dir=*anEntity;

}

Chapter 5. File Systems 157

Iterate over all Mounted Volumes
You can iterate over all of the volumes mounted on a system. Instantiate and use
an IVolumeIterator:
IVolume vol;
for (IVolumeIterator aVolume; aVolume; aVolume++) {

vol=*aVolume;
}

Iterate over all Root Directories
You can also search through all of the topmost, or “parentless” directories, on the
system. These directories are called root directories. IRootDirectoryIterator iterates
over all root directories on all mounted volumes and returns an IDirectory for the top
of each separate directory hierarchy on the system. For example, on a UNIX host
there is only one root directory (named “/”) for the entire system.

On a Windows or an OS/2 system, there is a one-to-one
correspondence between root directories and volumes, so volume iterators and
root-directory iterators return the same entities.

The following code will call the external function processEntity for every root
directory on the system.
for (IRootDirectoryIterator aRoot; aRoot; aRoot++) {

processEntity(*aRoot);
}

“Chapter 5. File Systems” on page 139
“File System Entities” on page 140
“Path Names and Path Name Parsers” on page 149
“File System Iterators” on page 156
“File System Exceptions” on page 163

“Instantiate the File System Classes” on page 141
“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Copy and Move Files and Directories” on page 159
“Customize File System Operations” on page 161
“Get and Set Information about File System Entities” on page 146
“Work with Path Names” on page 152

File System Movers and Copiers
IFileSystemEntity’s moveTo and copyTo Functions
The IFileSystemEntity class provides functions that copy or move a file or directory
into a specified destination directory:

v The copyTo function copies an entity from its current location to another location

v The moveTo function moves an entity from its current location to another location

These functions are not meant to be customized.

Mover and Copier Classes
The File System Framework provides the following classes which you can subclass
if you need customized copy or move behavior:

158 IOC Library User’s Guide

v IFileOperation is an abstract base class for classes that operate recursively over
a tree of file system entities. It is the parent of IFileSystemMover and
IFileSystemCopier.

v IFileSystemMover moves files and directories from one IDirectory instance to
another, recursively moving all of an entity’s children.

v IFileSystemCopier copies files and directories between IDirectory instances,
recursively copying all of an entity’s children.

These classes provide the infrastructure for progress indicators, custom failure
handling, and resolution of file-naming conflicts. You can instantiate and use
IFileSystemMover and IFileSystemCopier directly, or subclass them in order to
implement progress reporting, name-conflict resolution and failure handling. You can
derive from IFileSystemCopier or IFileSystemMover to handle failures, resolve
name conflicts, or report progress. You can also create an entirely new file
operation by subclassing from IFileOperation. For example, you could create a
subclass of IFileOperation that adds up the total size of all files in a directory tree,
or searches through all of the files for a particular piece of data.

“Chapter 5. File Systems” on page 139

“Copy and Move Files and Directories”
“Customize File System Operations” on page 161

Copy and Move Files and Directories
Copy a File or Directory Using IFileSystemEntity::copyTo
IFileSystemEntity provides the copyTo function, inherited by IFile and IDirectory,
which you can use to copy an entity from one parent directory to another:
IDirectory destinationDir = ...;
aFile.copyTo(destinationDir);
aDirectory.copyTo(destinationDir);

You can specify a new name for the copy:
aFile.copyTo(destinationDir, newName);
aDirectory.copyTo(destinationDir, IFileName(“”));

If the new name you provide is empty, the original entity’s name is used.

If you are copying a directory tree, you can control the behavior when an error
occurs. You have two choices for error handling, as defined by the
IFileSystemEntity::EFailureAction enum:

v kStop causes the exception to be thrown immediately. This is the default.

v kContinue attempts to complete the operation on all remaining entities, and then
throws the exception encountered.

For example:
aDirectory.copyTo(destinationDir, IFileName(“”), IDirectory::kContinue);

Since files do not have children, the kContinue flag has no effect if an error occurs
while copying a file.

Chapter 5. File Systems 159

Move a File or Directory Using IFileSystemEntity::moveTo
IFileSystemEntity provides the moveTo function, inherited by IFile and IDirectory,
which you can use to move an entity from one parent directory to another:
IDirectory destinationDir = ...;
aFile.moveTo(destinationDir);
aDirectory.moveTo(destinationDir);

If you want to move a physical entity to a different name in the same directory
(rename it), you can use the setName function.

You can specify a new name for the directory at the same time you move it:
aFile.moveTo(destinationDir, newName);
aDirectory.moveTo(destinationDir, IFileName(“”));

If the new name you provide is empty, the original entity’s name is used.

If you are moving a directory tree, you can control the behavior when an error
occurs in the same manner as IFileSystemEntity::copyTo. For example:
aDirectory.moveTo(destinationDir, IFileName(“”), IDirectory::kContinue);

Since files do not have children, the kContinue flag has no effect if an error occurs
while moving a file.

When you call moveTo on an entity instance, the instance will be updated to point
to the entity’s new physical location on disk. However, any other instances that
pointed to the original physical entity will not be updated.

Use the IFileSystemCopier and IFileSystemMover Classes Directly
You can use the IFileSystemCopier and the IFileSystemMover utility classes to copy
and move file system entities. Simply instantiate the appropriate object, specifying
whether to stop or keep going when a failure occurs, and then call its move or copy
function:
IFileSystemCopier copier(IFileSystemCopier::kContinue);
copier.copy(aFile, destinationDir);

IFileSystemMover mover(IFileSystemMover::kStop);
mover.move(aFile, destinationDir, newName);
mover.move(aDir, destinationDir);

“Chapter 5. File Systems” on page 139
“File System Entities” on page 140
“File System Movers and Copiers” on page 158
“File System Exceptions” on page 163
“File System Movers and Copiers” on page 158

“Instantiate the File System Classes” on page 141
“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Customize File System Operations” on page 161
“Get and Set Information about File System Entities” on page 146
“Work with Path Names” on page 152

160 IOC Library User’s Guide

Thread Safety
A surrogate instance (a file system entity) is only a handle to a physical entity.
Multiple file system entities can point to a single physical entity.

The classes that comprise the File System interface are not multithread-safe. You
cannot share individual file system entity instances. Even though the entity
instances themselves are not thread-safe, however, the underlying physical objects
they represent usually are. You can make copies of an instance and simultaneously
use the original and each copy in a different thread.

Copies of file system instances are very inexpensive to construct, and the File
System interface is designed to ensure that the implementation of copy semantics
is efficient.

Note that if the files themselves are not thread-safe—for example, if there are two
unsynchronized threads writing to a file at once—making copies of the entity
instances will not help.

“Chapter 5. File Systems” on page 139
“Open Class Threading Model” on page 47

“Instantiate the File System Classes” on page 141
Access the Contents of Files

Customize File System Operations
Support Progress Indicators
You will typically customize move or copy operations rather than create your own
file operation. See Create Your Own File Operation below for information about
subclassing IFileOperation to create an entirely new file system operation.

You can support progress indicators by subclassing the appropriate file system
operation class and overriding reportProgress. Return true if the operation should
continue or false if it should terminate. In the following example, the file system
copier IMyCopier prints a message to cout each time reportProgress is called. The
definitions of trivial functions such as constructors and destructors have been
omitted.

class IMyCopier : public IFileSystemCopier {
public:

IMyCopier(EFailureAction action,
unsigned int tellMeTimes);

protected:
virtual bool reportProgress(double fractionDone,

const IFileSystemEntity& currentEntity);
};

Chapter 5. File Systems 161

bool
IMyCopier::reportProgress(

double fractionDone,
const IFileSystemEntity& currentEntity)

{
cout << fractionDone << “% complete\n”;
return !terminatedByUser();

}

The tellMeTimes parameter to the IMyCopier constructor is passed to the base
class IFileSystemCopier. This parameter specifies the number of times that
reportProgress should be called during the operation. For example, if you want to
display a “% copied” indicator, pass 100 in this parameter. If you have a progress
indicator that is 210 pixels wide, pass 210 in this parameter.

Resolve File Name Conflicts
You can implement file name-conflict resolution during move or copy operations by
subclassing a file operation class, such as IFileSystemCopier or IFileSystemMover,
and overriding renameNeeded. The following example is a custom
IFileSystemMover subclass, IMyMover, that calls the external function
GetNewName to prompt the user for a new file name. It then returns true to indicate
that a new name was entered and the file operation should continue, or false to
indicate that a new name was not entered and the operation must stop. The
definitions of trivial functions such as constructors and destructors have been
omitted.

class IMyMover : public IFileSystemMover {
public:

IMyMover(EFailureAction action = kContinue,
unsigned int tellMeTimes = 0);

protected:
virtual bool renameNeeded(IFileName& modifyThisName,

const IFileSystemEntity& currentEntity);
};

bool
IMyMover::renameNeeded(

IFileName& modifyThisName,
const IFileSystemEntity& currentEntity)

{
bool gotNewName = GetNewName(currentEntity.name(),

modifyThisName);
return gotNewName;

}

Handle Exceptions and Other Failures
Any exceptions other than name-conflict errors are passed back to the file operation
object for handling. The default implementation rethrows the exception. You can
subclass a file operation class and override handleFailure to handle any exceptions
that occur during the execution of your file operation:

class IMyCopier : public IFileSystemCopier {
public:

IMyCopier(EFailureAction action = kStop,
unsigned int tellMeTimes = 0);

protected:
virtual bool handleFailure(IException& reason,

const IFileSystemEntity& currentEntity);
};

bool

162 IOC Library User’s Guide

IMyCopier::handleFailure(
IException& reason,
const IFileSystemEntity& currentEntity)

{
// display an alert window
return errorHandledSuccessfully;

}

Create Your Own File System Operation
You will not normally need to create an entirely new type of file system operation,
but it is easy to do. Subclass IFileOperation and override the pure virtual function
doOneEntity:

class IMyOperation : public IFileOperation {
public:

IMyOperation(EFailureAction action,
unsigned int tellMeTimes);

protected:
virtual IFileSystemEntity

doOneEntity(const IFileSystemEntity& entity,
IDirectory& target,
const IFileName& newName);

};

IFileSystemEntity
IMyOperation::doOneEntity(

const IFileSystemEntity& entity,
IDirectory& target,
const IFileName& newName)

{
// perform operation here and return appropriate
// IFileSystemEntity

}

“Chapter 5. File Systems” on page 139
“File System Entities” on page 140
“File System Movers and Copiers” on page 158
“File System Exceptions”

“Instantiate the File System Classes” on page 141
“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159
“Get and Set Information about File System Entities” on page 146
“Work with Path Names” on page 152

File System Exceptions
All file system exceptions derive directly or indirectly from IException. All of the
standard IException behavior will work with these classes:

Class Description

IEntityInUse Indicates an attempt to move, delete, or
otherwise manipulate an entity that is
currently in use.

Chapter 5. File Systems 163

Class Description

IEntityInvalid Indicates an attempt to perform an operation
on a file system entity that does not point to
a valid on-disk entity.

IEntityTypeMismatch Indicates an attempt to assign the wrong
type of file system entity to another entity
subclass.

IFileOperationCancelled Indicates that the user canceled a file system
operation.

IVolumeOffline Indicates an attempt to perform an operation
on a volume that is off line.

“Chapter 5. File Systems” on page 139
“Exceptions in the IBM Open Class” on page 259

“Instantiate the File System Classes” on page 141
“Create and Delete Files and Directories” on page 143
“Access File Contents” on page 154
“Access Directory and Volume Contents” on page 156
“Copy and Move Files and Directories” on page 159

164 IOC Library User’s Guide

Chapter 6. Internationalization and Text

International Framework
The International Framework provides classes for creating international applications
and manipulating international text. International applications are those that can be
localized for different languages and geographic regions without accessing the
source code. International text may consist of translated text strings as well as
different character sets.

Locales
A locale is typically defined by a combination of language and geographical region,
but other elements, such as date, time, currency, and number formats, may also
help to form the locale definition.

The locale mechanism provides access for localizable resources. Localizable
resources include any objects—such as transcoders, collation objects, number
formatters, date formatters, and time zones—that might change to support different
languages or geographic regions. For example, collation ordering rules for text
sorting are associated with particular languages, while date, time, and currency
formats are more closely associated with particular regions.

ILocaleKey lets you access both host-specific and portable resources associated
with a particular locale. Neither ILocaleKey nor the particular locale in question
owns the objects associated with it.

Collation
Collation classes enable both language-sensitive and language-insensitive string
comparison. For language-sensitive comparison of Unicode text strings, the
collation classes use the alphabetical ordering rules of a natural language instead of
the numeric values of the character encoding system.

Transcoding
Using a set of mapping rules to convert text data between two character encoding
standards is called transcoding. The Open Class transcoding classes enable
conversion of Unicode character data to and from other character encoding
systems, including ASCII and the code pages used in Microsoft® environments. The
transcoding classes also handle the conversion of special characters.

The LOCPATH environment variable identifies the location of international resources
on your system. You must define this environment variable so that the C run-time
can find the locale data files.

On the iSeries, if the LOCPATH environment variable is not defined, locales
(or the symbolic links to the OS/400 *LOCALE objects) are assumed to be in IFS
directory ’/QIBM/locales’.

On z/OS, if the LOCPATH environment variable is not defined, locales are
assumed to be from a HFS directory ’/usr/lib/nls/locale’.

“Locales in Internationalization” on page 166
“Locale Classes” on page 167

© Copyright IBM Corp. 1996, 2001 165

“Collation Classes” on page 173
“Transcoding Classes” on page 180
“Transcoder Names” on page 185

Locales in Internationalization
Locales provide the mechanism for organizing and accessing localizable
resources—any objects that might change to support different languages or
geographic regions. Such objects can include transcoders, collation objects, number
formatters, data formatters, and time zones, among others.

Object Portability
Localized objects fall into one of two categories:

v Host objects are specific to a particular platform implementation. You cannot
typically build or modify them programmatically, nor can you stream them to other
systems. They are usually tied to a specific locale, and you construct them using
the key for that locale.

v Portable objects are not host-dependent. You can typically build them
programmatically from data, edit them, and stream them to other systems. You
can also construct them using a locale key if they have been associated with that
locale. Portable objects can be shared between locales, but they are not required
to be associated with any locale.

No locale owns the objects associated with it; the locale simply provides a way to
access those objects.

Names of International Objects
The locale mechanism allows each locale and each object associated with that
locale to have a set of displayable names. At a minimum, each object has a name
for its locale in the default language and in English. Objects can also have names
in other languages for display to end users, as illustrated in this figure:

“International Framework” on page 165
“Locale Classes” on page 167
“Collation Classes” on page 173
“Transcoding Classes” on page 180
“Transcoder Names” on page 185
“Date and Time Classes” on page 191
“DBCS and National Language Support” on page 204

“Get a Key for a Locale” on page 170
“Get an Object from the Current Default Locale” on page 171

166 IOC Library User’s Guide

“Get an Object from a Specific Locale” on page 171
“Iterate through Available Locales” on page 172

Locale Classes
The locale classes consist of ILocaleKey,which gives you access to the resources
associated with a particular locale, and ILocaleKeyIterator, which lets you iterate
through the locally installed locales.

z/OS C/C++ feature provides national language support using the XPG/4
programming model, and using the locale-sensitive functions of the C runtime
library.

The IBM Open Class uses the C runtime locale across all platforms.

This figure illustrates how locales can be grouped by language (as for English) or
by geographical location (as for Switzerland):

Access to Locale Resources
The primary class you use to work with locales is ILocaleKey. ILocaleKey acts as
an identifier for a specific locale and is used as a parameter for functions that
create a particular type of localizable object. For example, the
ICollation::createCollation function takes an ILocaleKey object that indicates what
language the collation should reflect. On the other hand, the
ILocaleKey::displayName function lets you display the locale name in any language
for which a name is provided. Each type of international object should provide a
displayName function, such as ICollation::displayName.

When you need a localized object, create an ILocaleKey object to define the locale
with which to associate the object. A given object can be associated with more than
one locale. Thus, a collation object for English could be associated with many, or
even all, English-speaking locales (United States, Canada, United Kingdom,
Jamaica, and so on). The set of objects associated with a locale can be
open-ended; you are free to associate new objects with the locale.

Use ILocaleKey to identify the locale for which you want to access localized
resources. You can use ILocaleKey to specify a particular locale (such as U.S.
English) or to specify the default locale on the current host. ILocaleKey gives you
access to both host-specific and portable objects associated with a given locale.

ILocaleKey supports two ways to describe a specific locale:

v Using the host locale ID (an unsigned long value) for the current platform. For
example, on Win32 platforms the locale identifier for United States English is
0x0409.

Chapter 6. Internationalization and Text 167

v Using the portable POSIX identifier. This has three parts:

– A two-character language identifier, for example, “EN” for English or “ZH” for
Chinese.

– A two-character region identifier, for example, “US” for the United States or
“TW” for Taiwan.

– An extension. This extension can vary in size and number of components
depending on the platform. The extension is used to identify a particular locale
when there are several locales with the same language and region identifier.
On systems such as AIX, the extension is the code page in which the locale
was created. For example, the U.S. English locale can be accessed as either:

- en_US

- en_US.ISO8859-1

On the iSeries system, the extension is a 5-digit numeric CCSID followed
optionally by the Euro Modifier ’@EURO’. For example, there are two French
locales for France, they are:

- fr_FR.00297

- fr_FR.01147@EURO

On the z/OS system, the extension is the code page in which the locale was
created, followed by the optional ’@euro’ Modifier. For example, the Belgian
French locale can be accessed as either:

- Fr_BE.IBM-1148

- Fr_BE.IBM-1148@euro

When you use a locale key to obtain an object for a given locale, the system does
the following:

1. If there is a corresponding host object for that locale, the system returns it.

2. If there is no corresponding host object for that locale, the system looks for an
object that corresponds to the same language.

3. If there are no corresponding host objects, the system looks for a corresponding
portable object.

4. If there is no corresponding portable object, the system throws an exception.

The following chart describes the interface for ILocaleKey:

Member function Description

path and setPath Let you access the directory where the locale
exists.

languageID and setLanguageID Let you access the language identifier
portion of the locale ID. Two special
language identifiers, “C” and “POSIX,”
indicate the POSIX C locale. If you specify
one of these language identifiers, the region
and extension are set to null. If you set the
language identifier to a null string, the locale
key is set to the default host locale.

regionID and setRegionID Let you access the region identifier portion of
the locale ID.

extension and setExtension Let you access the extension used to
uniquely identify locales whose
POSIX IDs map to more than one locale.

168 IOC Library User’s Guide

Member function Description

posixID and setPosixID Let you access the entire POSIX identifier
string. This string has one of two formats. If
the path is empty, it has the format
“fLanguageID_fRegionID.fExtension”, for
example, “ES_ESM”. The second format of
the POSIX identifier string is
“fPath/fLanguageID_fRegionID.fExtension”,
for example,
“/usr/lib/nls/locale/en_US.IBM-1047”.

hostID and setHostID Let you access the host identifier. These
functions allow you to create a locale object
using Windows LCID identifiers.

isCLocale Indicates whether the locale key references
the C (POSIX) locale.

defaultLocale A static function that returns a locale key for
the current default locale.

displayName Returns a localized, displayable name for the
locale. You specify the locale in which to
display the name and a lookup strategy for
finding the name:

v kExactLocale: Return the display name
only for the exact locale specified.

v kExactLanguage: If there is no name for
the exact locale specified, return the name
from another locale with the same
language identifier.

v kAnyLanguage: If there is no name in the
specified locale or language, return the
name in the default locale and language.
This is the default option.

Locale Iteration
Use ILocaleKeyIterator to iterate through the locales available on the current hosts.
Because ILocaleKeyIterator iterates through currently installed locales (rather than
all locales supported by the locale mechanism), it may not reflect the full set of
supported locales. You do not need to initialize an ILocaleKeyIterator object; when
constructed, it automatically references the first locale key in the list.

LocaleKeyIterator uses the LOCPATH environment variable to determine the
directory where the locales are installed.

On the iSeries system, the default directory is /QIBM/locales.

On the z/OS system, the default directory is /usr/lib/nls/locale.

“International Framework” on page 165
“Locales in Internationalization” on page 166
“Collation Classes” on page 173
“Transcoding Classes” on page 180
“Transcoder Names” on page 185

Chapter 6. Internationalization and Text 169

“Get a Key for a Locale”
“Get an Object from the Current Default Locale” on page 171
“Get an Object from a Specific Locale” on page 171
“Iterate through Available Locales” on page 172

Locale Names
For each fileset you want to use, you must explicitly install the

corresponding fileset.

“Locale Classes” on page 167
“International Framework” on page 165

Set the Locale
To use national language support you must set the locale for your program, using
the setlocale() function:

setlocale(LC_ALL,“”);

The setlocale() function call should be the first call in main(), before any IString
variables are defined.

Your program should call setlocale() only once. You can provide the locale
information for setlocale() in the LANG environment variable. When your program
runs, it then reads the locale information from the LANG environment variable.

Any references to locale that occur before the call to setlocale() will use the C
locale by default.

In the XPG/4 model, the locales are process scoped. In a multi-threaded
environment, you will get unpredictable results if another setlocale() call is made in
a different thread.

If setlocale() is called and an application has called pthread_create() to
create another thread, setlocale() returns NULL pointer and does not change the
current locale.

For more information on setlocale() function, please refer to z/OS C/C++
Programming Guide.

“Locale Classes” on page 167

“Get a Key for a Locale”
“Get an Object from the Current Default Locale” on page 171
“Get an Object from a Specific Locale” on page 171

Get a Key for a Locale
When you create a locale key, you generally want a key either for the current
default locale or for a specific locale. To get the key for the current default locale,
use the ILocaleKey::defaultLocale function. For example:

ILocaleKey key(ILocaleKey::defaultLocale());

170 IOC Library User’s Guide

To get a key for a specific locale, use the locale ID. Each locale has a portable ID
defined by POSIX consisting of a language identifier, a region identifier, and a
host-specific ID defined by the particular platform. For example, to create a locale
key for the German-speaking part of Switzerland:

ILocaleKey *key = new ILocaleKey(“DE”, “CH”);

“Locale Classes” on page 167
“Locale Names” on page 170

“Set the Locale” on page 170
“Get an Object from the Current Default Locale”
“Get an Object from a Specific Locale”

Get an Object from the Current Default Locale
Many classes that are instantiated into localized objects provide static functions for
creating the object for a particular locale. To get the object for the current default
locale, you can do the following:

1. Call the localizable object’s create function without specifying a locale:
// Call the createCollation function
ICollation *coll = ICollation::createCollation();

2. Call the static function ILocaleKey::defaultLocale to get a locale key for the
current default and pass that key to the localizable object’s create function:

// Create a key for the current default locale
ILocaleKey defaultKey(ILocaleKey::defaultLocale());

// Call the createCollation function
ICollation

*coll = ICollation::createCollation(defaultKey);

“Locale Classes” on page 167
“Locale Names” on page 170

“Set the Locale” on page 170
“Get a Key for a Locale” on page 170
“Get an Object from a Specific Locale”

Get an Object from a Specific Locale
To get an object from a specific locale, you need to know either the POSIX identifier
or the host identifier for that locale. You then create a locale key from that identifier
and use the key to instantiate the correct object.

If using POSIX identifiers, you need to specify either the language identifier or both
the language and region identifiers. Certain locales also require an extension to
distinguish them (for example, Modern and Traditional Spanish Sort).

To get a localized object from a specific locale:

1. Create an ILocaleKey for the locale and pass in the identifier for it.

2. Call the localized object class’s create function and pass in the key for the
specific locale.

Chapter 6. Internationalization and Text 171

For example, this code shows how to get the collation object for the French
Canadian locale:

// Get the collation object for the
// French Canadian locale
try
{

ICollation
*coll = ICollation::createCollation

(ILocaleKey(“FR”, “CA”));
}
catch (IException&)
{

// If it isn't available,
// use the collation for the default
locale coll = ICollation::createCollation();

}

“Locale Classes” on page 167
“Locale Names” on page 170

“Set the Locale” on page 170
“Get a Key for a Locale” on page 170
“Get an Object from the Current Default Locale” on page 171

Iterate through Available Locales
Use ILocaleKeyIterator to iterate through the available locales. ILocaleKeyIterator
iterates through the locales currently installed on the system, not the complete set
of supported locales.

The following steps show how to use ILocaleKeyIterator:

1. Instantiate an ILocaleKeyIterator.

2. Use operator++ or operator— to move forward or backward through the list of
installed locales.

3. Use operator* to return a key for the locale currently referenced by the iterator
or use operator-> to return a constant pointer to the key.

For example, this code shows how to iterate through the available locales, printing
out the English name for each locale:

// Create the iterator
ILocaleKeyIterator iter;

// Create a key for an English locale
ILocaleKey english(“EN”);

while (iter)
{

// Get the name of the current locale
IText name = (*iter).displayName(english);
cout << name << “/n”;
cout.flush();

// Increment the iterator to the next
// locale in the list
iter++;

}

172 IOC Library User’s Guide

“Locale Classes” on page 167
“Locale Names” on page 170

“Iterate through Available Collation Objects” on page 179
“Iterate through Available Transcoders” on page 190

Collation Classes
Overview of Collation Classes
In most cases, the ordering of Unicode values does not produce correct ordering
results. For example, in the ASCII-based character sets, Z is ordered before a, and
z is ordered before ñ. Open Class collation classes, however, support collation
objects that compare strings based not on the Unicode values of each character,
but on the rules of a natural language. This is what enables language-sensitive
string comparison.

Each International Framework collation object is based on a set of rules that define
the results for alphabetizing and comparing text in a particular natural language.
These rules define not only a ranking (such as a < b < c) but three levels of priority
within the ranking.

For many European languages, the difference between two base letters (a and b) is
a primary difference, the difference between an unaccented and an accented base
letter (ä and a) is secondary, and the difference between an uppercase and
lowercase letter (A and a) is tertiary. These distinctions allow you to set the level of
comparison for more sophisticated sorting and searching.

The ICollation interface is based on the protocols in the C++ Standard Library
collate class, which provides string comparison and hashing functions. The
ICollation comparison functions take two strings or substrings and return a value
that indicates whether the source string is greater than (later in the alphabet), less
than (earlier in the alphabet), or equal to the target string. You can specify the
ordering strength of the comparison to control how differences such as case and
accents are handled.

You can compare styled text in an IText object, but styling information is ignored.

Collation Subclasses
The collation classes include the abstract base class ICollation, which defines the
protocol for language-sensitive string comparison and several concrete subclasses,
and ICollationIterator, which lets you iterate through the list of available localized
collation objects. The following chart describes some of the collation classes that
are available:

Class Description

IBitwiseCollation Provides bitwise, language-insensitive string
comparison.

ICollation Provides access to a host-specific collation
for a given language as available. Primary
class for language-sensitive string
comparison.

ICollationIterator Lets you iterate through the available
collation objects.

Chapter 6. Internationalization and Text 173

ICollation provides the protocols you use to create both language-sensitive and
language-insensitive collation objects. The ICollation interface is a superset of the
interface of the C++ Standard Library collate class. Based on the locale you specify,
the ICollation::createCollation function can return:

v A host-specific collation object for the specified language or locale

v An IBitwiseCollation object that performs language-insensitive collation. To
request that createCollation return an IBitwiseCollation object, specify the POSIX
locale (“POSIX” or “C”).

The following chart describes the interface for ICollation:

Member function Description

createCollation A static function that returns the collation
object for a specified locale. If you don’t
specify a locale, the function returns the
collation object for the default locale.
createCollation also lets you specify a
comparison level. The default is
ICollation::kTertiaryDifference.

compare Returns the result of comparing two strings.
The result is returned as an enum value:
kSourceEqual, kSourceLess, or
kSourceGreater.

strength and setStrength Functions strength and setStrength provide
access to the collation object’s current
ordering strength (primary, secondary, or
tertiary).

isEqual, isGreaterThan, and isLessThan Convenience functions that return a bool
value indicating the comparison result of two
strings.

transform Converts an IText into another IText that is
compared lexicographically with the original
text. Comparing two transformed IText
objects returns the same results as
comparing the same strings before
transformation.

localeKey Returns an ILocaleKey indicating the locale
the collation object is associated with.

displayName Returns a displayable name for the object for
a specified locale.

Collation Iteration
Use ICollationIterator to iterate through the list of international collation objects
currently available on the system.

Ordering Strength
The correct collation for each language or script is determined by a set of rules that
define a ranking, from least to greatest, for each character. To allow more
comparison options, each character is assigned an ordering priority within the
ranking: primary, secondary, or tertiary. For example, in an English collation:

v Base letters represent a primary difference (“a” and “b”)

v Diacritical marks on the same base letter represent a secondary difference (“a”
and “â”)

174 IOC Library User’s Guide

v Uppercase and lowercase versions of the same base letter represent a tertiary
difference (“a” and “A”)

In English, then, you can implement case-insensitive comparison by setting the
ordering strength to kSecondaryDifference. Primary and secondary differences are
considered but any tertiary (case) differences are ignored-thus, “pat,” “Pat,” and
“PAT” would be considered equivalent strings.

When you create a collation object, you specify an ordering strength that
determines whether all differences, both primary and secondary differences, or only
primary differences are considered. The types of differences that are considered
primary, secondary, and tertiary may vary based on the language you are working
with.

This table shows the results for English strings compared with different ordering
strengths:

Source Target Ordering strength Comparison result

abc abc kPrimaryDifference kSourceEqual

äbc abc kPrimaryDifference kSourceEqual

Abc abc kPrimaryDifference kSourceEqual

abc def kPrimaryDifference kSourceLess

abc äbc kSecondaryDifference kSourceLess

abc Abc kTertiaryDifference kSourceLess

def abc kPrimaryDifference kSourceGreater

äbc abc kSecondaryDifference kSourceGreater

Abc abc kTertiaryDifference kSourceGreater

When you are using the collation object for the POSIX locale specifying an ordering
strength has no effect.

“International Framework” on page 165
“Locales in Internationalization” on page 166
“Locale Classes” on page 167
“Transcoding Classes” on page 180
“Transcoder Names” on page 185

Instantiate a Collation Object
ICollation is an abstract class that provides the standard interfaces for all collation
operations. Subclasses of ICollation provide host-specific collation objects for
specific natural languages. IBitwiseCollation is a special portable collation object
that provides simple, language-insensitive comparison of Unicode values.

By using the collation classes in conjunction with the locale mechanism, you can
implement text sorting and searching features that will work correctly in any user’s
natural language without needing to know the specific requirements of that
language. To create a language-sensitive collation object, call the
ICollation::createCollation function. You pass in the locale key corresponding to the
language (or more specific locale) of the text you want to collate. For example, you
would code the following to get the standard collation for English:

Chapter 6. Internationalization and Text 175

ICollation* order =
ICollation::createCollation(ILocaleKey(“EN”));

If you use the locale key, createCollation returns the best collation object:

v If the locale key is a valid host locale key, it creates a host-specific collation
object.

v If the locale key doesn’t represent a valid host or portable locale, the function
throws an exception.

v If you don’t specify a locale key, the function returns the default collation object
for the current locale.

“Collation Classes” on page 173
“Locale Names” on page 170

“Instantiate a Transcoder” on page 186

Perform Case-Insensitive String Comparison
To perform case-insensitive comparison of strings, set the ordering strength of the
ICollation object to ignore the level of difference represented by a case difference.
Generally cases represent a tertiary difference, although this may differ between
languages. This means you set the collation object to consider only primary and
secondary differences and ignore tertiary differences.

1. Create the collation object by calling ICollation::createCollation, specifying the
desired locale and ordering strength (ICollation::kSecondaryDifference).

2. Call the compare function or one of the helper functions isEqual, isGreaterThan,
or isLessThan to compare the two strings.

For example, this code shows how to do case-insensitive comparison of two strings,
text1 and text2, using the collation object for U.S. English:

// Create a locale key for the U.S. English locale
ILocaleKey usLoc(“EN”, “US”);

// Create the collation object
ICollation*

order = ICollation::createCollation
(usLoc,
ICollation::kSecondaryDifference);

int result = order->compare(text1, text2);
if (result == ICollation::kSourceEqual)
{

// strings are equal
// or only have case differences

}
else
{

// strings are not equal
}
delete order;

“Locale Classes” on page 167
“Locale Names” on page 170
“Collation Classes” on page 173
“Collation Classes” on page 173

176 IOC Library User’s Guide

“Perform Language-Sensitive String Comparison”
“Perform Bitwise String Comparison” on page 178
“Use the ICollation::transform Function” on page 178

Perform Language-Sensitive String Comparison
Use ICollation to perform language-sensitive comparison of two Unicode strings.
You can use the collation object for the language of the current default locale, or
you can specify a particular language or locale.

1. Call ICollation::createCollation to get the collation object for the locale you want.
You can indicate both a specific locale and an ordering strength for the collation
object. If you don’t specify a locale, the functions returns the collation object for
the current default locale. If you don’t specify an ordering strength, the default is
ICollation::kTertiaryDifference.

2. Call ICollation::compare to compare the two strings. The compare function
returns an enum value indicating the results of the comparison: kSourceLess
(-1), kSourceEqual (0), or kSourceGreater (1). You can also use the functions
isEqual, isGreaterThan, or isLessThan. These return a bool.

For example, this code shows how to compare two strings, text1 and text2, using
the collation object for the French locale:

// Create a locale key for the French locale
ILocaleKey french((IText(“FR_FR”));

// Create the collation object,
// using the default ordering strength
ICollation*

order = ICollation::createCollation(french);

// Compare the strings
ICollation::ETextComparisonResult
result = order->compare(text1, text2);
if (result == ICollation::kSourceEqual)
{

// strings are equal
}
else if (result == ICollation::kSourceLess)
{

// text1 is less than text2
}
else
{

// text1 is greater than text2
}
delete order;

This code shows how to use isEqual to compare the strings, using the collation
order for the default locale:

ICollation* order = ICollation::createCollation();
if (order->isEqual(text1, text2))
{

// strings are equal
}
delete order;

“Locale Classes” on page 167
“Locale Names” on page 170
“Collation Classes” on page 173
“Collation Classes” on page 173

Chapter 6. Internationalization and Text 177

“Perform Case-Insensitive String Comparison” on page 176
“Perform Bitwise String Comparison”
“Use the ICollation::transform Function”

Perform Bitwise String Comparison
IBitwiseCollation performs bitwise (language-insensitive) string comparison, directly
comparing the Unicode double-byte character values. Double-byte character sets
are used for handling languages such as Japanese, Chinese, and Korean, which
contain more symbols than can be represented by the 256 characters of the
single-byte character set.

The following steps show you how to perform a bitwise comparison:

1. Create an IBitwiseCollation object. You can either create the IBitwiseCollation
object directly from the IBitwiseCollation constructor, or call
ICollation::createCollation, passing in the POSIX (“C”) locale.

2. Use compare or one of the helper functions isEqual, isGreaterThan, or
isLessThan to compare the strings.

The following code extract performs a bitwise string comparison between the IText
objects text1 and text2:

// Create a locale key for the POSIX locale
ILocaleKey cLocale(“C”);

// Create the IBitwiseCollation object
ICollation*

order = ICollation::createCollation
(cLocale);

if (order->isEqual(text1, text2))
{

// strings are equal
}
else
{

// strings are not equal
}
delete order;

Specifying an ordering strength has no effect on the comparison results when using
IBitwiseCollation.

“Locale Classes” on page 167
“Locale Names” on page 170
“Collation Classes” on page 173
“Collation Classes” on page 173
“DBCS and National Language Support” on page 204
“Double-Byte Character Set Support” on page 204

“Perform Case-Insensitive String Comparison” on page 176
“Perform Language-Sensitive String Comparison” on page 177
“Use the ICollation::transform Function”

Use the ICollation::transform Function
You may want to use the transform function when you are going to compare one
string with many other strings, for example, when creating the index for a database.

178 IOC Library User’s Guide

The result of comparing two transformed strings should be the same as the result of
comparing the original strings. For example:

ILocaleKey locale(“EN”, “UK”);
ICollation* order = ICollation::createCollation(locale);
xfmSource = order->transform(sourceString);
xfmTarget = order->transform(targetString);

int oldResult = order->compare(sourceString, targetString);
int newResult = xfmSource.compare(xfmTarget);
if (oldResult == newResult)

{
cout << “Transform succeeded.\n”;
}

else

{
cout << “Transform did not succeed. \n”;

}
delete order;

“Locales in Internationalization” on page 166
“Locale Classes” on page 167
“Locale Names” on page 170
“Collation Classes” on page 173

“Perform Case-Insensitive String Comparison” on page 176
“Perform Language-Sensitive String Comparison” on page 177
“Perform Bitwise String Comparison” on page 178

Iterate through Available Collation Objects
Use ICollationIterator to iterate through the available collation objects. You may only
iterate through host objects; you may not iterate through portable objects.
ICollationIterator provides a create function that returns the collation object currently
referenced by the iterator.

Follow these steps to use ICollationIterator:

1. Instantiate an ICollationIterator object.

2. Use operator++ to move forward through the list of available collation objects.

3. Use create to get the collation object referenced by the iterator at a given point.

For example, this code shows how to iterate through the available collation objects
and instantiate a collation object for French, if it is available:

ICollationIterator iter;
bool notFound = true;
ILocaleKey key;
while (notFound && iter)
{

key.setPOSIXID(iter.localePOSIXID());
if (key.languageID == “FR”)
{

ICollation* order = iter.create();
notFound = false;

}
else
{

Chapter 6. Internationalization and Text 179

iter++;
}

}
delete order;

“Collation Classes” on page 173

“Iterate through Available Locales” on page 172
“Iterate through Available Transcoders” on page 190

Transcoding Classes
Overview of Transcoding Classes
Transcoding is the process of converting text data between two coded character
sets using mapping rules.

The goal of the Open Class libraries is for all text to be encoded in Unicode and
manipulated according to the Unicode character encoding standard. Any text you
import from or export to a system that uses a different character encoding scheme
must be transcoded so that the text can be manipulated directly on the target
system.

The Open Class transcoding classes support conversion of character data to and
from Unicode, and a wide variety of other encoding sets and encoding schemes,
including ASCII and other ISO standards. This support enables you to import and
export text data between Open Class applications and other environments. The
Open Class transcoders use the ioc::unichar_t datatype to represent Unicode
characters in IText objects and the char datatype to represent non-Unicode
characters in IString objects.

The transcoding classes also provide mechanisms for handling characters that do
not have obvious mappings between Unicode and another character set. These
mechanisms handle both line-breaking characters, which differ between platforms,
and exception characters. Exception characters are characters that can often be
transcoded but do not have a one-to-one mapping. These may include ligature
characters, foreign characters, or composed characters.

The following table describes the transcoding classes:

Class Description

ITranscoder Primary class defining protocols for
transcoding character data between Unicode
and any other character encoding standard

180 IOC Library User’s Guide

Class Description

ILineBreakConverter Simple class used to postprocess
line-breaking conventions after character
data is transcoded into Unicode, or
preprocess line-breaking characters before
Unicode data is transcoded into char-based
data

ICharacterSetIterator Lets you iterate through the character sets
for which transcoders are available

Transcoders
ITranscoder provides the abstract protocol for all transcoders supported by the
Open Class system. You create a transcoder by specifying a character set to
ITranscoder::createTranscoder, which returns an instance of the ITranscoder
subclass supporting that character set.

ITranscoder is currently the only public transcoder class. You access all concrete
subclasses through the ITranscoder interfaces.

ITranscoder provides both a simple, high-level interface, which converts between
IText and IString instances, and a low-level interface, based on the C++ Standard
Library codecvt interface, which takes pointers to char and ioc::unichar_t arrays.
The high-level functions take two parameters, a char-based IString object and an
ioc::unichar_t-based IText object, and convert either to or from Unicode data.

The low-level pointer-based functions let you manipulate char and ioc::unichar_t
strings directly. Some of the low-level functions are identical to the interfaces
provided by the C++ Standard Library codecvt class. They allow you to specify
exact ranges of text to transcode and to provide error-recovery mechanisms.

The following table describes the ITranscoder interface:

Member function Description

createTranscoder Returns a transcoder for the character
encoding set you specify. See the topic
Transcoder Names for a list of supported
transcoder names. If you don’t specify a
name, the function returns a transcoder for
the current host character set.

toUnicode and fromUnicode Provide conversion between char and
ioc::unichar_t data. Overloads of these
functions take IString or char* and IText or
ioc::unichar_t*.

result Returns an enum value that indicates
whether the conversion was fully converted,
partially converted, or stopped due to an
error. This value is also returned by
toUnicode and fromUnicode.

unmappedBehavior and
setUnmappedBehavior

Let you determine how the transcoder
handles exception characters.

Chapter 6. Internationalization and Text 181

Member function Description

setCharSubstitute Lets you specify a character to be used as a
substitute for characters that do not have a
mapping from Unicode to the specified
character set. The default character is
UASCII::kSubstitute (0x1A).

uniCharSubstitute Returns the character used as a substitute
for characters that do not have a mapping
from the source character set into Unicode.

characterEncoding Returns an IText containing the name of the
character encoding supported by the
transcoder.

characterSet Returns an IText containing the name of the
default encoding for a specified locale.

resetState Resets the state of the transcoder to ASCII.

Storage query functions Let you get information about storage
requirements so you can manage storage
allocation for transcoding operations
efficiently.

Line-Breaking Conversion
ILineBreakConverter is a simple class that you use to ensure that line breaking
characters are transcoded correctly between Unicode and the target character set.
You can use ILineBreakConverter to postprocess strings just converted into
Unicode, or preprocess strings before converting them into char data.

The following table describes the ILineBreakConverter interface:

Member function Description

convertInPlace and convert Process the line breaks in an IText object
according to a specified line-breaking
convention.

hostConvention Returns the line-breaking convention for the
current host.

ILineBreakConverter uses the enum ELineBreakConvention to describe different
line-breaking conventions. The following describes the current line-breaking
conventions:

Constant Description Code

kUnicode Unicode convention UGeneralPunctuation
::kParagraphSeparator
(U+2029)

kCRLF Windows, DOS, OS/2 convention CR LF sequence

kLF UNIX, z/OS USS and OS/400 (in
IFS) convention

LF

kCR Macintosh System 7 convention CR

kCRLF_VT Microsoft Word/Rich Edit
convention

CR LF or VT

182 IOC Library User’s Guide

Constant Description Code

kHost Indicates the current host’s
convention

ILineBreakConverter uses the following rules to convert between various host
line-breaking conventions and Unicode:

Host
Line-breaking
convention

Unicode text with
host convention Unicode convention

Win32, OS/2, DOS CR LF sequence 0x000D 0x000A U+2029

AIX, OS/400 (IFS),
z/OS USS

LF 0x000A U+2029

Macintosh CR 0x000D U+2029

Word/RichEdit CR LF sequence 0x000D 0x000A U+2029

Word/RichEdit VT 0x000B U+2028

Character Set Iteration
Use ICharacterSetIterator to iterate through the list of character encoding sets for
which transcoders are available on the current system. ICharacterSetIterator returns
IText objects that contain the names of supported character sets.

Special Characters
The ITranscoder transcoding functions provide special handling for both line-break
and exception characters.

The class ILineBreakConverter provides for conversion between the Unicode
paragraph-separator character (U+2029 or
UGeneralPunctuation::kParagraphSeparator) and the appropriate line-break
character for a given character set or host. You can use this class to postprocess
transcoded strings after conversion into Unicode or to preprocess strings before
conversion into char-based formats.

ITranscoder also lets you control how exception characters are handled. Exception
characters are characters that do not have a single-character equivalent or that do
not exist in the target character set. For example, Greek characters may be used in
some environments where they are not part of the native character set, and ligature
characters, which by definition combine two characters, are often mapped to a
sequence of their individual components. The following table shows some typical
cases:

Unicode Name
Unicode
sequence Display May be mapped to Control code

LATIN SMALL LIGATURE
FI

FB01 [fi] 0066 [f] +
0069 [i]

\xde

GREEK CAPITAL LETTER
DELTA

0394 D ý or other \xc6

GREEK SMALL LETTER
PI

03C0 p * or ¼ or other \xb9

Chapter 6. Internationalization and Text 183

To specify how you want exception characters to be handled, call the
ITranscoder::setUnmappedBehavior function. You can specify a substitution
character, in either Unicode or the target character set, or you can specify that the
transcoder either skip exception characters or stop the transcoding operation when
it reaches one.

By default, transcoders substitute UGeneralFunction::kReplacementCharacter
(U+FFFD) for Unicode characters with no mapping, and the ASCII substitution
character (UASCII::kSubstitute, or 0x1A) for char characters with no mapping.

Exception Characters
The transcoders let you specify how you want exception characters to be handled.
Exception characters are characters for which there are no one-to-one mappings
between Unicode and the target character set. Use the EUnmappedBehavior enum
to specify one of the following:

kUseSub Substitutes an equivalent representation in
the target character set for characters with
no exact mapping

kStop Stops transcoding when an exception
character is detected

kOmit Skips any exception characters detected

If you don’t specify behavior for exception character handling, the transcoder uses
EUnmappedBehavior::kUseSub as the default. The substitute characters that are
used are:

v UGeneralPunctuation::kReplacementCharacter (U+FFFD) for characters that
cannot be transcoded into Unicode

v UASCII::kSubstitute (0x1A) for characters that cannot be transcoded out of
Unicode, that is, into the target char-based character set

You can set the char substitute character to another character with the ITranscoder
function setCharSubstitute. Whether to display these characters as glyphs or as text
strings is left to the host operating system.

Mapping Proximity
When you create a transcoder for a specific character set, you can specify how
close the mapping proximity must be between Unicode and the target character set.
Use the EMappingProximity enum to specify one of the following:

kExactMapping Create a transcoder with an exact mapping
to the specified character set

kSupersetMapping Create a transcoder with a character set that
is a superset of the specified character set

kCloseMapping Create a transcoder with a character set as
close to the specified character set as
possible

If you don’t specify a mapping proximity, the transcoder uses
EMappingProximity::kSupersetMapping as the default.

184 IOC Library User’s Guide

“Transcoder Names”

“Instantiate a Transcoder” on page 186
“Iterate through Available Transcoders” on page 190
“Process Line-Breaking Characters” on page 189
“Verify Transcoding Results” on page 191

Transcoder Names
This table lists the transcoder name for each character encoding set currently
supported by the transcoding classes and their corresponding names on various
platforms. Use the name listed in the “Open Class Transcoder Name” column to
create a transcoder for a particular character encoding set.

Character set

Open Class
Transcoder
Name

WinNT code
page

OS/2 code
page

AIX code
page OS/400 CCSID

z/OS code
page

ASCII US-ASCII 1252 IBM-1252 ISO8859-1 819 IBM_819

Latin 1/ANSI ISO-8859-1 1252 IBM-1252 ISO8859-1 819 IBM_819

Eastern
Europe

ISO-8859-2 1250 - close IBM-1250 ISO8859-2 912 IBM_912

Microsoft
Eastern
Europe

MSCP-1250 1250 n/a n/a n/a n/a

Other Latin Set ISO-8859-3 n/a n/a ISO8859-3 913 n/a

Other Latin Set ISO-8859-4 n/a n/a ISO8859-4 914 IBM_914

ISO Cyrillic ISO-8859-5 n/a IBM-1251 ISO8859-5 915 IBM_915

Microsoft
Cyrillic

MSCP-1252 1251 n/a n/a n/a n/a

ISO Arabic ISO-8859-6 n/a IBM-1256 ISO8859-6 1089 IBM_1089

Microsoft
Arabic

MSCP-1256 1256 n/a n/a n/a n/a

ISO Greek ISO-8859-7 1253 - close IBM-1253 ISO8859-7 813 IBM_813

Microsoft
Greek

MSCP-1253 1253 n/a n/a n/a n/a

ISO Hebrew ISO-8859-8 1255 - close IBM-1255 ISO8859-8 916 IBM_916

Microsoft
Hebrew

MSCP-1255 1255 n/a n/a n/a n/a

ISO Turkish ISO-8859-9 1254 -
superset

IBM-1254 ISO8859-9 920 IBM_920

Microsoft
Turkish

MSCP-1254 1254 n/a n/a n/a n/a

IBM Shift JIS Shift-JIS n/a n/a IBM-932 932 n/a

Microsoft Shift
JIS

Shift-JIS 932 - superset n/a n/a n/a n/a

IBM EUC EUC n/a n/a IBM-eucJP 33722 n/a

IBM Simplified
Chinese

GB-2312.1980 n/a n/a IBM-eucCN 1383 n/a

IBM Korean KSC-5601 n/a IBM-949 IBM-eucKR 970 n/a

IBM Traditional
Chinese

CNS-
11643.1986

n/a IBM-950 IBM-eucTW 964 n/a

8-bit UTF UTF-8 UTF-8 UTF-8 UTF-8 1208 n/a

Macintosh
Roman

MSCP-10000 10000 n/a n/a n/a n/a

MS-DOS US MSCP-437 437 n/a n/a n/a n/a

DOS US IBM-437 n/a IBM-437 IBM-437 437 n/a

MS-DOS
Multilingual

MSCP-850 850 n/a n/a n/a n/a

Chapter 6. Internationalization and Text 185

Character set

Open Class
Transcoder
Name

WinNT code
page

OS/2 code
page

AIX code
page OS/400 CCSID

z/OS code
page

DOS
Multilingual

IBM-850 n/a IBM-850 IBM-850 850 IBM_850

“International Framework” on page 165
“Locales in Internationalization” on page 166
“Locale Classes” on page 167
“Collation Classes” on page 173
“Transcoding Classes” on page 180

Instantiate a Transcoder
ITranscoder is an abstract class that provides the standard interfaces for all
transcoding operations. Transcoders for each character set are implemented in
subclasses of ITranscoder. To create a transcoder, call the static function
ITranscoder::createTranscoder with a parameter specifying the name of the
character set you want to transcode text to or from.

For example, to create a transcoder for the standard Latin1 ISO 8859 character set,
you would do the following:

ITranscoder* transcoder =
ITranscoder::createTranscoder(“ISO-8859-1”);

If you don’t specify a character set name, the function returns the default transcoder
for the current host character set. For example, on a Japanese Windows NT host,
you will get a Shift-JIS transcoder.

“Transcoding Classes” on page 180
“Transcoder Names” on page 185

“Instantiate a Collation Object” on page 175

Convert Text from Character Format to Unicode
Use ITranscoder to convert text data from a char-based format (either char* or
IString) to Unicode (either ioc::unichar_t* or IText).

To use ITranscoder to convert from char text data into Unicode text:

1. Call ITranscoder::createTranscoder to create a transcoder for the desired
character set. See Transcoder Names for a transcoder name to use. You can
also specify a mapping proximity. ITranscoder::kSupersetMapping is the default.

2. Set the behavior for handling exception characters if you want the transcoder to
do something other than use substitution characters. You can use
ITranscoder::setUnmappedBehavior to specify exception handling behavior.

3. Transcode the text using the toUnicode function.

4. Postprocess the line-breaking characters by calling
ILineBreakConverter::convertInPlace or convert.

For example, this code shows how to transcode text from the Microsoft ShiftJIS
character set (charText) into Unicode:

186 IOC Library User’s Guide

// From character format to Unicode
#include <itrancod.hpp>
#include <iostream.h>
#include <iexcbase.hpp>

int main(int argc, char *argv[])
{

try
{

// Create the transcoder
ITranscoder*

transcoder = ITranscoder::createTranscoder
(“Shift-JIS”,
ITranscoder::kExactMapping);

// Transcode the string
IText unicodeText;
char* charText = “Transcode me!”;
ITranscoder::result

res = transcoder->toUnicode(charText, unicodeText);
if (res == std::codecvt_base::ok)
{

cout << “Successful transcoding ” << endl;
}
else
{

cout << “Couldn't transcode” << endl;
}

// Postprocess any line-breaking characters
ILineBreakConverter::convertInPlace(unicodeText);
delete transcoder;

}
catch (IException &ie)
{

cout << “Type of exception is: ” << ie.name() << endl
<< ie.text() << endl;

}
return 0;

}

The member function ITranscoder::createTranscoder will throw an exception if it is
unable to create a new transcoder object. For example, if you have not installed the
Japanese locale and you execute this example, you will see output similar to the
following:
Type of exception is: IObjectNotFound
Could not create metafile resource.

“Transcoder Names” on page 185

“Convert Text from Unicode to Character Format”
“Process Line-Breaking Characters” on page 189
“Convert with Standard C++ Compatible Transcoding Functions” on page 190
“Verify Transcoding Results” on page 191

Convert Text from Unicode to Character Format
To convert text data from Unicode to another character encoding standard, use
ITranscoder. The Unicode data can be either an ioc::unichar_t* or an IText object.
The char data can be either a char* or an IString object.

Chapter 6. Internationalization and Text 187

To convert text from Unicode into another character format:

1. Call ITranscoder::createTranscoder to create a transcoder for the desired
character set. See the topic Transcoder Names for the transcoder name to use.
You can also specify a mapping proximity. ITranscoder::kSupersetMapping is the
default.

2. Set the behavior for handling exception characters if you want the transcoder to
do something other than use substitution characters. You can specify the
behavior using ITranscoder::setUnmappedBehavior. You can also set specific
substitution characters using setCharSubstitute.

3. Preprocess the line-breaking characters by calling
ILineBreakConverter::convertInPlace or convert. You must specify the
line-breaking convention to use for the non-Unicode text.

4. Transcode the text using the fromUnicode function.

For example, this code shows how to transcode text from Unicode (unicodeText)
into the ISO-8859-1 (Latin) character set:

// From Unicode to character format
#include <itrancod.hpp>
#include <iostream.h>
#include <iexcbase.hpp>

int main(int argc, char *argv[])
{

try
{

IText unicodeText(“Transcode me!”);

// Create the transcoder
ITranscoder*

transcoder = ITranscoder::createTranscoder
(“ISO-8859-1”);

// Preprocess any line breaking characters
ILineBreakConverter::convertInPlace

(unicodeText, ILineBreakConverter::kHost);

// Transcode the string
IString asciiText;
ITranscoder::result
res = transcoder->fromUnicode

(unicodeText,asciiText);
if (res == std::codecvt_base::ok)
{

cout << “Successful transcoding” << endl
<< unicodeText << endl;

}
else
{

cout << “Couldn't transcode” << endl;
}
delete transcoder;

}
catch (IException &ie)
{

cout << “Type of exception is: ” << ie.name() << endl
<< ie.text() << endl;

}
return 0;

}

The member function ITranscoder::createTranscoder will throw an exception if it
cannot create a new transcoder object.

188 IOC Library User’s Guide

“Transcoder Names” on page 185

“Convert Text from Character Format to Unicode” on page 186
“Process Line-Breaking Characters”
“Convert with Standard C++ Compatible Transcoding Functions” on page 190
“Verify Transcoding Results” on page 191

Process Line-Breaking Characters
To ensure that line-break characters are correctly transcoded between Unicode and
a host character set, use the ILineBreakConverter class, either to preprocess
strings before converting them to a host character set or to postprocess strings after
converting them into Unicode.

The following steps show how to use ILineBreakConverter:

1. Call the static function convert or convertInPlace. The function convert returns a
new IText with the converted string. The function convertInPlace operates
directly on the IText that you passed.

2. When preprocessing strings for conversion to a non-Unicode character set, you
must specify the convention to use. You can specify a particular convention or
ILineBreakConverter::kHost, which uses the convention for the current host.

For example, this code excerpt shows how to postprocess line breaks after
conversion into Unicode, then preprocess for conversion back to the original
character set:

// Transcode into Unicode
transcoder->toUnicode(hostText, unicodeText);

// After transcoding, postprocess the line breaks.
ILineBreakConverter::convertInPlace(unicodeText);

// Operate on unicodeText
// ...

// Before transcoding out of Unicode,
// preprocess the line breaks
ILineBreakConverter::convertInPlace

(unicodeText,
ILineBreakConverter::kHost);

transcoder->fromUnicode(unicodeText, hostText);

“Transcoding Classes” on page 180
“Transcoder Names” on page 185

“Convert Text from Character Format to Unicode” on page 186
“Convert Text from Unicode to Character Format” on page 187
“Convert with Standard C++ Compatible Transcoding Functions” on page 190
“Verify Transcoding Results” on page 191

Chapter 6. Internationalization and Text 189

Convert with Standard C++ Compatible Transcoding Functions
Instead of transcoding directly between IText and IString objects, you can use
pointer-based functions, based on the Standard C++ codecvt functions, that directly
manipulate char* and ioc::unichar_t* data. The following steps describe how to
convert from char* data into Unicode:

1. Call ITranscoder::createTranscoder to create a transcoder for the source
character set.

2. Establish the range of the source char array to transcode and create a pointer
to iterate through the char array during transcoding.

3. Allocate an ioc::unichar_t array to hold the transcoded data and ioc::unichar_t*
variables to use as pointers when iterating through the array during transcoding.

4. Transcode using the toUnicode function.

For example, this code shows how to transcode a char string into Unicode:
const char* ansiText1 = “An ISO-8859-1 string.”;
ITranscoder*

transcoder = ITranscoder::createTranscoder
(“ISO-8859-1”);

#define BUFSIZE 256
ioc::unichar_t unicodeText[BUFSIZE];
char* ansiText1_next = NULL;
ioc::unichar_t* unicodeText_end = unicodeText+BUFSIZE;
ioc::unichar_t* unicodeText_next = NULL;

// Transcode the string
ITranscoder::result
res = transcoder->toUnicode

(ansiText1,
ansiText1+strlen(ansiText1),
ansiText1_next,
(ioc::unichar_t *)unicodeText,
unicodeText_end,
unicodeText_next);

if (res == std::codecvt_base::ok)
{

// Transcoding was successful
}
delete transcoder;

“Transcoding Classes” on page 180
“Transcoder Names” on page 185

“Convert Text from Character Format to Unicode” on page 186
“Convert Text from Unicode to Character Format” on page 187
“Process Line-Breaking Characters” on page 189
“Verify Transcoding Results” on page 191

Iterate through Available Transcoders
Use ICharacterSetIterator to iterate through the character sets for which transcoders
are available. The iterator returns an IText object containing the name of the
character set supported by each transcoder.

The following steps show how to use ICharacterSetIterator:

1. Instantiate an ICharacterSetIterator.

2. Use operator++ to move forward through the list of transcoders.

190 IOC Library User’s Guide

For example, this code shows how to search through the character sets for which
transcoders are available to determine whether a transcoder for for the ISO-8859-7
character set is provided:

IText greek(“ISO-8859-7”);
ICharacterSetIterator iter;
while (iter && *iter != greek)
{

iter++;
}
if (iter)
{

// If the iterator was found, construct it
ITranscoder*

transcoder = ITranscoder::createTranscoder(iter*);
}

“Transcoding Classes” on page 180
“Transcoder Names” on page 185

“Iterate through Available Collation Objects” on page 179
“Iterate through Available Locales” on page 172

Verify Transcoding Results
The ITranscoder transcoding functions return an enum value that indicates how well
the transcoder was able to convert the data to the target character set. The
following chart describes the possible values:

Value Description

ok The conversion was completed.

partial The source characters were only partially converted.

error The source contained characters that could not be
converted.

noconv No conversion was needed.

“Transcoding Classes” on page 180

“Convert Text from Character Format to Unicode” on page 186
“Convert Text from Unicode to Character Format” on page 187
“Process Line-Breaking Characters” on page 189
“Convert with Standard C++ Compatible Transcoding Functions” on page 190

Date and Time Classes
The IDate and ITime classes are independent classes that provide you with data
types to store and manipulate date and time information. Because the IDate and
ITime classes are independent, when an ITime object’s time passes 23:59:59
(24-hour format) or 11:59:59 (12-hour format), it has no effect on the value of any
IDate object.

The ITimeStamp class provides you with a data type to store and manipulate
timestamp information, where a timestamp represents a specific point in time; for
example, combined date and time.

Chapter 6. Internationalization and Text 191

With these classes, you can create date, time, and timestamp objects, and use
member functions to do the following:

v Write date, time, or timestamp objects to an output stream

v Access detailed information about dates, times, or timestamps

v Compare dates, times, or timestamps

v Test the characteristics of date or time objects

v Add or subtract days from a date object

v Add or subtract hours, minutes, or seconds from a time or timestamp object

v Convert between date formats or between time formats.

“Dates and Calendars”
“Information Functions for IDate Objects”
“Time” on page 195
“Information Functions for ITime Objects” on page 196
“Time Stamps” on page 199
“Information Functions for ITimeStamp Objects” on page 200

Dates and Calendars
The IDate class uses Gregorian calendar dates. The Gregorian calendar is in
general use and consists of the 12 months, January to December.

IDate also supports the Julian date format, which represents the date as the
number of days elapsed since January 1, 4713 B.C. For example, February 14,
1965 is 2438806 as a Julian date.

The IDate class returns the names of the days and months in the language defined
by the current locale. For information on defining the locale, see the standard C
library function setlocale().

“Date and Time Classes” on page 191
“Information Functions for IDate Objects”
“Time” on page 195
“Information Functions for ITime Objects” on page 196
“Time Stamps” on page 199
“Information Functions for ITimeStamp Objects” on page 200

“Create an IDate Object” on page 193
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

Information Functions for IDate Objects: The IDate class defines information
functions that you can use to obtain specifics about an IDate object. For example,
you can find out what day of the week, month, or year an IDate object’s date falls
on, or what the name of the day or month is for the current locale. You can also find
out what today’s date is. The following example shows some of the IDate
information functions:

// Information functions for IDate class

#include <iostream.h>
#include <istring.hpp>
#include <idate.hpp>

192 IOC Library User’s Guide

int main(int argc, char *argv[])
{

IDate Day1(27,IDate::May,1964);
cout << Day1.dayName() << “ ”

<< Day1.monthName() << “ ”
<< Day1.dayOfMonth() << “ out of ”
<< IDate::daysInMonth(Day1.monthOfYear(), Day1.year()) << “ days in month, ”
<< IDate::daysInYear(Day1.year()) << “ days in year ”
<< Day1.year() <<'.' << endl;

return 0;
}

This program produces the following output:
Wednesday May 27 out of 31 days in month, 366 days in year 1964.

“Dates and Calendars” on page 192
“Date and Time Classes” on page 191
“Time” on page 195
“Information Functions for ITime Objects” on page 196
“Time Stamps” on page 199
“Information Functions for ITimeStamp Objects” on page 200

Create an IDate Object: You can create an IDate object using different IDate
constructors:

// Month, day, year
IDate OneDay(IDate::June,30,1994);

// Day, month, year
IDate AnotherDay(23,IDate::April,1961);

// Julian date format
IDate SomeDay(2452045);

// Year, day of year
IDate Yesterday(1994,177);

The constructors accepting a month use the IDate enumeration Month, whose
members are named January through December (the months of the year in
English).

“Date and Time Classes” on page 191
“Dates and Calendars” on page 192

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197
“Compare ITime Objects” on page 197
“Write an ITime Object to an Output Stream” on page 198
“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects” on page 202
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

Chapter 6. Internationalization and Text 193

Change an IDate Object: You can add days to, or subtract days from, an IDate
object. You can also subtract one date from another, in which case the result is the
number of days between the two dates. The following example code changes
various IDate objects:

IDate Day1, Day2;
int NumDays;
Day1=IDate::today();

// Day2 is one day after Day1
Day2=Day1+1;

// Day2 is now three days after Day1
Day2+=2;

// NumDays=3
NumDays=Day2-Day1;

You cannot add two IDate objects together because such an addition does not
make sense. However, you can add two ITime objects together.

“Date and Time Classes” on page 191
“Dates and Calendars” on page 192

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197
“Compare ITime Objects” on page 197
“Write an ITime Object to an Output Stream” on page 198
“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects” on page 202
“Create an IDate Object” on page 193
“Compare and Test IDate Objects”

Compare and Test IDate Objects: You can compare two IDate objects to
determine whether they are equal, or whether one is later than the other. The
following operators are defined: ==, !=, <, <=, >, >=. For example, the following
if-statement evaluates true:

IDate Day1(IDate::January,1,1994);
IDate Day2(IDate::June,3,1968);
IDate Day3(IDate::July,12,1941);

if ((Day1 > Day2) && (Day1 != Day3))
{

// This if-statement evaluates to true
}

You can also check whether a particular year is a leap year, or whether a particular
combination of day, month, and year is valid. The isLeapYear() function returns true
if its integer argument is a leap year.

The isValid() function accepts combinations of day, month, and year (or day of year
and year), and returns true if the provided date is valid. For example, the first call to
isValid() returns true for the first date below, and the second returns false:

if (IDate::isValid(IDate::June, 30, 1990))
{

// This call to isValid() returns true
}

194 IOC Library User’s Guide

if (IDate::isValid(1965,366))
{

// ...
}
else
{

// This call to isValid returns false.
// There is no day number 366 in 1965.

}

“Date and Time Classes” on page 191
“Dates and Calendars” on page 192

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197
“Compare ITime Objects” on page 197
“Write an ITime Object to an Output Stream” on page 198
“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects” on page 202
“Create an IDate Object” on page 193
“Change an IDate Object” on page 194

Time
The ITime class refers to time in the 24-hour format by specifying time units (hours,
minutes, seconds) past midnight.

To display an ITime object, use either the asString function to convert the ITime
object to an IString, or the asText function to convert to an IText object.

To display ITime objects in the 12-hour format, use the asString function with a
char* argument of “%r”. (This argument is a format string. All format specifiers of
the strftime() function of the standard C library are supported by the IString
conversion function.)

To display ITime objects in the 12-hour format with an IText object, use the asText
function with a Unicode argument of “%r”. For example:

ITime time;
time.asText(IText(“%r”));

Note that objects of the ITime class are precise only up to the nearest second, and
cannot be used for more precise timings.

“Dates and Calendars” on page 192
“Date and Time Classes” on page 191
“Information Functions for IDate Objects” on page 192
“Information Functions for ITime Objects” on page 196
“Time Stamps” on page 199
“Information Functions for ITimeStamp Objects” on page 200

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197

Chapter 6. Internationalization and Text 195

“Compare ITime Objects” on page 197
“Write an ITime Object to an Output Stream” on page 198

Information Functions for ITime Objects: Three of the information functions
return an ITime’s hour, minute, or second settings; the other information function
returns the current time, as determined by the system clock. For example:

ITime Time1(ITime::now());
cout << Time1.hours() << “ o'clock occurred ”

<< Time1.minutes() << “ minutes and ”
<< Time1.seconds() << “ seconds ago.” << endl;

This displays a result such as the following:
12 o'clock occurred 16 minutes and 23 seconds ago.

“Dates and Calendars” on page 192
“Date and Time Classes” on page 191
“Information Functions for IDate Objects” on page 192
“Time” on page 195
“Time Stamps” on page 199
“Information Functions for ITimeStamp Objects” on page 200

Create an ITime Object: You can create an ITime object and initialize it to a
number of seconds past or before midnight, or to a number of hours, minutes, and
optionally seconds past midnight. The following examples create ITime objects.

// 09:19:16
// 33556 = 9 hours (32400 seconds),
// 19 minutes (1140 seconds),
// 16 seconds (adds up to 33556)
ITime Time1(33556);

// 14:40:44
// (9 hours, 19 minutes and
// 16 seconds BEFORE midnight)
ITime Time2(-33556);

// 12:00:00 (noon)
ITime Time3(12,00);

// 03:03:03
ITime Time4(3,3,3);

The constructors translate incorrect times into valid ITime objects using modulo
arithmetic. For the seconds past midnight format, any number whose absolute value
is greater than or equal to 86400 is divided by 86400, and the remainder is used to
calculate the time. For the hours, minutes, and optional seconds format, excess
minutes and seconds are added to the hours and minutes values, respectively, and
if the hour exceeds 23 it is divided by 24 and the remainder is taken. The following
examples show how ITime translates incorrect times into valid ITime objects:

// 13:05:56
// (133556 - 86400 = 47156 seconds after midnight)
ITime Time1(133556);

// 10:54:04
// (133556 - 86400 = 47156 seconds BEFORE midnight)
ITime Time2(-133556);

// 12:00:00 (noon)
// (10 hours plus 119 minutes plus 60 seconds)
ITime Time3(10,119,60);

196 IOC Library User’s Guide

// 09:33:00
// (33 hours - 24 hours = 9 hours)
ITime Time4(33,33);

“Date and Time Classes” on page 191
“Time” on page 195

“Change an ITime Object”
“Compare ITime Objects”
“Write an ITime Object to an Output Stream” on page 198
“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects” on page 202
“Create an IDate Object” on page 193
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

Change an ITime Object: You can add or subtract two times. Four operators are
provided: +, +=, -, and -=. The following example shows the use of these operators:

ITime Start(12:00), Duration(2:00);

// Done=14:00
ITime Done = Start + Duration;

// Start=12:00 still
Start = Done - Duration;

// Start=14:00
Start += Duration;

// Start=12:00 again
Start -= Duration;

“Date and Time Classes” on page 191
“Time” on page 195

“Create an ITime Object” on page 196
“Compare ITime Objects”
“Write an ITime Object to an Output Stream” on page 198
“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects” on page 202
“Create an IDate Object” on page 193
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

Compare ITime Objects: Functions are defined to let you compare ITime objects
for equality, inequality, or relative position in time. The following operators are
defined: ==, !=, <, <=, >, >=. In the following example, a message is displayed if
enough time elapses between the first and second calls to the now() member
function:

Chapter 6. Internationalization and Text 197

#include <itime.hpp>
#include <iostream>

ITime First(ITime::now());

int main(int argc, char *argv[])
{

ITime Second=ITime::now();
if (First < Second)
{

// Some time has passed
std::cout << “You must be debugging me!”

<< std::endl;
}

return 0;
}

This message usually does not print when the program is run outside of a
debugging session. However, if you debug the program and step through each line
slowly, the message may be displayed, because the first ITime object is initialized
during program initialization (before main is called) while the second ITime object is
initialized within main.

“Date and Time Classes” on page 191
“Time” on page 195

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197
“Write an ITime Object to an Output Stream”
“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects” on page 202
“Create an IDate Object” on page 193
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

Write an ITime Object to an Output Stream: ITime defines an output operator
that writes an ITime object to an output stream in the format hh:mm:ss. If you want
to write the object out in a different format, you should convert the object to an
IString using the asString member function. This member function accepts a char*
argument containing a format specifier. The format specifier is the same one as
used by the C library function strftime. The following program displays some valid
specifiers and the output they produce:

// Examples of ITime output

#include <istring.hpp>
#include <itime.hpp>
#include <iostream>

// needed for setw()
// to set output stream width
#include <iomanip>

int main(int argc, char *argv[]) {
char* FormatStrings[]={

“%H : %M and %S seconds”,
“%r”,
“%T”,
“%T %Z”,

198 IOC Library User’s Guide

“%1M past %1I %p”
};

// %H, %M, %S - 2 digits for hrs/mins/secs
// %r - standard 12-hour clock with am/pm
// %T - standard 24 hour clock
// %Z - local time zone code
// %1... - One digit for hour/minute
// %p - am/pm

// Left-justify output
std::cout.setf(std::ios::left, std::ios::adjustfield);

// Title text
std::cout << std::setw(30) << “Format String”

<< std::setw(40) << “Formatted ITime object”
<< std::endl;

// Show each time
for (int i=0;i<5;i++)
{

IString
Formatted=ITime::now().asString(FormatStrings[i]);

std::cout << std::setw(30) << FormatStrings[i]
<< std::setw(40) << Formatted << std::endl;

}
return 0;

}

The program produces output that looks like the following:
Format String Formatted ITime object
%H : %M and %S seconds 16 : 13 and 04 seconds
%r 04:13:04 PM
%T 16:13:04
%T %Z 16:13:04 EST
%1M past %1I %p 13 past 4 PM

The format specifier %n, where n is an integer, is not supported by strftime
on z/OS. As a result, if you use a format specification string containing %n in ITime
output, the format specification may appear in place of the desired output.

“Date and Time Classes” on page 191
“Time” on page 195

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197
“Compare ITime Objects” on page 197
“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects” on page 202
“Create an IDate Object” on page 193
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

Time Stamps
An ITimeStamp object can be created from an IDate object, an IDate and ITime
object, or a value that represents the number of seconds from the reference date
01/01/2000 00:00:00. If the time stamp is referring to a point in time before the
reference date, a negative value must be used.

Chapter 6. Internationalization and Text 199

“Dates and Calendars” on page 192
“Date and Time Classes” on page 191
“Information Functions for IDate Objects” on page 192
“Time” on page 195
“Information Functions for ITime Objects” on page 196
“Information Functions for ITimeStamp Objects”

“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects” on page 202

Information Functions for ITimeStamp Objects: The ITimeStamp class defines
information functions that you can use to obtain specific information about an
ITimeStamp object. For example, you can determine the number of seconds
separating the ITimeStamp object from the reference date (01/01/2000 00:00:00).
You can also find out what the current timestamp is.

Conversion operators have been provided that allow you to convert an existing
ITimeStamp object to an IDate object or an ITime object. Once the object has been
converted, the IDate or ITime information functions may be then be used.

The following example shows some of the ITimeStamp information functions:
// ITimeStamp example

#include <istring.hpp>
#include <itmstamp.hpp>
#include <idate.hpp>
#include <itime.hpp>
#include <iostream.h>

int main(int argc, char *argv[])
{

IString::enableInternationalization();
ITimeStamp RefDate;
ITimeStamp TmStamp = ITimeStamp::currentTimeStamp();
IDate ADate = TmStamp;
ITime ATime = TmStamp;
cout << TmStamp << “ is ” << TmStamp.asSeconds()

<< “ seconds apart from” << endl;
cout << RefDate << endl;
cout << ATime.hours() << “:” << ATime.minutes() << “:”;
cout << ATime.seconds() << “,” << ADate.dayOfYear();
cout << “ days into the year ” << ADate.year() << endl;

return 0;
}

This example produces the following output:
09/13/1999 17:23:09 is -9.44141e+06 seconds apart from
01/01/2000 00:00:00
17:23:9,256 days into the year 1999

The call to IString::enableInternationalization will cause dates to display with 4 digit
years.

“Dates and Calendars” on page 192

200 IOC Library User’s Guide

“Date and Time Classes” on page 191
“Information Functions for IDate Objects” on page 192
“Time” on page 195
“Information Functions for ITime Objects” on page 196
“Time Stamps” on page 199

Create an ITimeStamp Object: You can create an ITimeStamp object using
different ITimeStamp constructors:

// Create an IDate object
IDate ADate(IDate::December, 5, 1963);

// Create an ITime object
ITime ATime(10, 11, 12);

// 12/05/1963 midnight
ITimeStamp TmStamp1(ADate);

// 12/05/1963 10:11:12 am
ITimeStamp TmStamp2(ADate, ATime);

// 01/01/2000 01:06:40 am
ITimeStamp TmStamp3(4000.0);

// 12/31/1999 22:53:20 pm
ITimeStamp TmStamp4(-4000.0);

// same as ITimeStamp TmStamp5(0.0);
// 01/01/2000 00:00:00 am
ITimeStamp TmStamp5;

“Date and Time Classes” on page 191
“Time Stamps” on page 199

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197
“Compare ITime Objects” on page 197
“Write an ITime Object to an Output Stream” on page 198
“Change an ITimeStamp Object”
“Compare ITimeStamp Objects” on page 202
“Create an IDate Object” on page 193
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

Change an ITimeStamp Object: You can add seconds to, or subtract seconds
from, an ITimeStamp object. You can also subtract one ITimeStamp object from
another, in which case the result is the number of seconds between the two
timestamps. The following example code changes various ITimeStamp objects:

ITimeStamp TmStamp1, TmStamp2;
double diff;
TmStamp1 = ITimeStamp::currentTimeStamp();

// 4000.0 seconds after TmStamp1
TmStamp2 = TmStamp1 + 4000.0;

// go back 1000.0 seconds
TmStamp2 -= 1000.0;

Chapter 6. Internationalization and Text 201

// should be 3000.0 seconds different
// (if there is no rounding error)
diff = TmStamp2 - TmStamp1;

You cannot add two ITimeStamp objects together, as such an addition does not
make sense. Also, all the operations are done using floating point arithmetic. As a
result, some error due to rounding may occur.

“Date and Time Classes” on page 191
“Time” on page 195

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197
“Compare ITime Objects” on page 197
“Write an ITime Object to an Output Stream” on page 198
“Create an ITimeStamp Object” on page 201
“Compare ITimeStamp Objects”
“Create an IDate Object” on page 193
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

Compare ITimeStamp Objects: You can compare two ITimeStamp objects to
determine whether they are equal, or whether one is later than the other. The
following operators are defined: ==, !=, <, <=, >, and >=.

Since all the operations are done using floating point arithmetic, be aware that
some rounding error may occur.

The following example illustrates this point:
ITimeStamp TmStamp1(12345.54321);
ITimeStamp TmStamp2 = TmStamp1 + 9753.6802 - 9753.6802;

if (TmStamp1 == TmStamp2)
{

printf(“TmStamp1 == TmStamp2\n”);
printf(“TmStamp1 = %30.20f\n”, TmStamp1.asSeconds());
printf(“TmStamp2 = %30.20f\n', TmStamp2.asSeconds());

}
else
{

printf(”TmStamp1 != TmStamp2\n“);
printf(”TmStamp1 = %30.20f\n“, TmStamp1.asSeconds());
printf(”TmStamp2 = %30.20f\n“, TmStamp2.asSeconds());

}

This example displays the following output:
TmStamp1 != TmStamp2
TmStamp1 = 12345.54321000000000000000
TmStamp2 = 12345.54320999999800000000

“Date and Time Classes” on page 191
“Time” on page 195

202 IOC Library User’s Guide

“Create an ITime Object” on page 196
“Change an ITime Object” on page 197
“Compare ITime Objects” on page 197
“Write an ITime Object to an Output Stream” on page 198
“Create an ITimeStamp Object” on page 201
“Change an ITimeStamp Object” on page 201
“Create an IDate Object” on page 193
“Change an IDate Object” on page 194
“Compare and Test IDate Objects” on page 194

National

National Language Support
z/OS C/C++ feature provides national language support using the XPG/4
programming model, and using the locale-sensitive functions of the C runtime
library.

National Language Support (NLS) is enabled by default. As a result, member
functions of the IString, IDate, ITime, and ITimeStamp classes become locale
sensitive, in both single-byte character set (SBCS) and double-byte character set
(DBCS) environments. The classes provide the following capabilities:

Class Description

IString Character string handling in SBCS and DBCS environments.

IDate Date formatting and manipulation functions.

ITime Time formatting and manipulation functions.

ITimeStamp Date and time formatting and manipulation functions.

You can explicitly disable NLS by calling IString::disableInternationalization.

While the interfaces of these classes do not change when you enable NLS, the
underlying semantics change to reflect locale requirements. For example, the
compare family of IString functions no longer perform bitwise comparisons, but
instead perform comparisons based on the string collation sequence defined by the
current locale.

“Double-Byte Character Set Support” on page 204
“DBCS and National Language Support” on page 204

“Add National Language Support”
“Set the Locale” on page 170

Add National Language Support: To turn on the national language support, use
the ICLUI_I18N environment variable:

SET ICLUI_I18N=ON

export ICLUI_I18N=ON

Chapter 6. Internationalization and Text 203

v in JCL: GO step parameter ENVAR(ICLUI_I18N=ON)

v in USS: export ICLUI_I18N=ON

ADDENVVAR ENVVAR(ICLUI_I18N) VALUE(ON)

The following statements turn off the national language support:

SET ICLUI_I18N=OFF

export ICLUI_I18N=OFF

v in JCL: GO step parameter ENVAR(ICLUI_I18N=OFF)

v in USS: export ICLUI_I18N=OFF

ADDENVVAR ENVVAR(ICLUI_I18N) VALUE(OFF)

The support is on by default.

You can also use the IString class to turn national language support on or off from
within your program. The IString class provides three member functions that allow
you to programmatically turn internationalization on or off, and test for
internationalization:

static void enableInternationalization(bool enable = true);
static void disableInternationalization();
static bool isInternationalized();

“Set the Locale” on page 170

Double-Byte Character Set Support
Objects of the IString class and the I0String class can contain a mixture of
single-byte characters and double-byte characters. All member functions allow for
the mixture. The searching functions will not match a single-byte character with the
second or subsequent byte of a double-byte character. Functions that return
substrings will never separate the bytes of a double-byte character.

Although the double-byte characters are supported, you must be careful not to alter
the contents of a string in a way that would corrupt the data. For example, the
statement:

IString[n]='x';

would be an error if the nth byte of the IString was part of a double-byte character.

“National Language Support” on page 203
“DBCS and National Language Support”

DBCS and National Language Support
The IBM Open Class Library provides double-byte character set (DBCS) support
and national language support (NLS). You can use one source file for your
application code and provide DBCS and NLS support by using separate resource

204 IOC Library User’s Guide

files for the languages you support. Resource files are used to store strings that
need to be translated into other languages. Resource files are not supported on all
systems, but do have equivalents on all systems that IOC supports. For example,
on the z/OS system you can use either Language Environment callable service
CEEMGET or USS C/C++ function catgets() to retrieve message from message
catalog. The benefits of this organization include the following:

v The application is easy to maintain, because a single version of the application is
used. This reduces the cost of maintaining your code.

v The application is easy to upgrade because only the source code is upgraded
and then linked to the separate language files for different languages. This
reduces the time and cost of upgrading your code because different language
versions can be generated at the same time.

Because message strings are defined in either resource files or message catalogs,
they can be translated easily to your local language without changes to the source
code.

You should note the following when creating a DBCS-enabled application:

v String manipulation is DBCS-enabled. The string classes support mixed strings
that contain both SBCS and DBCS characters. Use the string testing functions to
determine if a character is single byte or double byte.

v The IDBCSBuffer class ensures that the search functions do not match the
second or any subsequent bytes of a DBCS character and that the bytes of a
DBCS character will not be split.

“National Language Support” on page 203
“Double-Byte Character Set Support” on page 204

“Add National Language Support” on page 203
“Set the Locale” on page 170

Troubleshoot International Objects
If the Open Class Library throws an IInvalidException object when you try to access
international objects, verify that your LOCPATH variable is set correctly. This
environment variable identifies the location of international resources on AIX, OS/2,
z/OS, and OS/400 systems, and on Windows systems if the POSIX locales are
installed.

If text data you translate into or out of Unicode and then back to the original
character set does not look the same as the original data, be aware that some
Win32 code pages do not correspond exactly to the Unicode ISO 8859 mapping
tables. When transcoding between Unicode and Microsoft code pages, create the
transcoder using the following:

v The Microsoft transcoder names provided in Transcoder Names

v The mapping proximity ITranscoder::kExactMapping

“Locale Names” on page 170
“Transcoder Names” on page 185
“Transcoding Classes” on page 180

Chapter 6. Internationalization and Text 205

Text Framework
The classes that are part of the Open Class Text Framework enable the creation,
storage, querying, and modification of text strings.

The primary classes provided by the Text Framework are as follows:

Class Description

IText A variable-length styled string class you can
use for storing styled or unstyled
international text. The IText class is
optimized for text of any length, from short
strings to large text data segments. The
length of an IText string is limited by
hardware and operating system constraints.
For ease of use and consistency, IText stores
style data along with character data so that
you can use styled characters throughout the
Open Class environment.

The IText class represents a 2 byte character
string. Use this class to create Unicode
enabled applications.

In an EBCDIC application, wchar_t
is wide EBCDIC, instead of Unicode.
Creating IText with wchar_t or L“...” literals
may yield unexpected results.
To use IText functions with ioc::unichar_t
parameters, users are expected to provide
Unicode data to IText functions. You can
compile the application as ASCII and protect
parts of the code that need to remain
EBCDIC with #pragma convlit(suspend) and
#pragma convlit(resume) commands.
Alternately, you can move all hard-coded
wide character strings in a separate file and
compile that file with convlit(“codepage”)
command to create Unicode data.

ITextBoundary Implements methods for locating boundaries
of characters, words, lines, and sentences.

IString Can be useful when you do not require the
style and international text capabilities
provided by IText. The IString represents a
single or multibyte string.

Style classes Can be applied to individual characters,
ranges of characters, or paragraphs.

Iterator classes Provide access to the character data in IText
objects.

“Text Creation and Manipulation” on page 207
“Text Boundaries” on page 207
“Text Storage” on page 208
“Strings and Buffers” on page 210
“String Formats” on page 213

206 IOC Library User’s Guide

“Text and Style Run Iteration” on page 217
“Summary of Text Framework Classes” on page 242

Text Creation and Manipulation
The primary interfaces you need to create and manipulate Unicode text strings,
whether styled or unstyled, are provided by IText. It gives you access to the storage
mechanism and provides a complete set of protocols for accessing and
manipulating both the character and the style data. IText is designed so that you
can use it to store unstyled text without the reduction in performance or increase in
memory requirements that may be associated with the styling mechanism.

You can create an IText object from another IText, from an IString, or from an array
of char or ioc::unichar_t.

In z/OS, any IText functions that take ioc::unichar_t parameters will expect
the values of those parameters to be Unicode data.

IText stores the char-based data internally and transcodes it to Unicode data on
demand. At that point, IText assumes that the char-based data is encoded with the
character code set of the current locale.

The IText interface parallels the API provided by the basic_string class from the
C++ Standard Library. It includes functions for converting between string formats,
for manipulating styles, and for working efficiently with the IText storage mechanism.

IText also supports the basic_string interfaces for simple searching and comparison.
These functions perform simple bitwise comparisons, and ignore styling information.
For language-sensitive comparison of IText strings, use the International
Framework’s collation classes.

“Text Framework” on page 206
“Text Boundaries”
“Text Storage” on page 208
“Strings and Buffers” on page 210
“String Formats” on page 213
“Text and Style Run Iteration” on page 217
“Summary of Text Framework Classes” on page 242
“Collation Classes” on page 173
“Transcoding Classes” on page 180
“Text Boundaries”

Text Boundaries
Identifying Text Boundaries
The ITextBoundary class implements methods for finding the location of boundaries
in text. ITextBoundary is an abstract base class. Instances of ITextBoundary
maintain a current position and scan over text returning the index of characters
where boundaries occur.

Character Boundaries
Character boundary analysis allows users to interact with characters as they expect
to, for example, when moving the cursor through a text string. Character boundary
analysis provides correct navigation through strings regardless of how a character is
represented. For example, an accented character might be stored as a base

Chapter 6. Internationalization and Text 207

character and a diacritical mark, or a single combined character. What users
consider to be a character can differ between languages.

Word Boundaries
Word boundary analysis is used by search and replace functions, as well as within
text editing applications that allow the user to select words with a double click.
Word selection provides correct interpretation of punctuation marks within and
following words. Characters that are not part of a word, such as symbols or
punctuation marks, have word breaks on both sides.

Line Boundaries
Line boundary analysis determines where a text string can be broken when
line-wrapping. The mechanism correctly handles punctuation and hyphenated
words.

Sentence Boundaries
Sentence boundary analysis allows selection with correct interpretation of periods
within numbers and abbreviations, and trailing punctuation marks such as quotation
marks and parentheses.

“Text Framework” on page 206
“Text Creation and Manipulation” on page 207
“Text Storage”
“Strings and Buffers” on page 210
“String Formats” on page 213
“Text and Style Run Iteration” on page 217
“Summary of Text Framework Classes” on page 242

Text Storage
IText is the basic mechanism for storing and manipulating Unicode text strings
throughout the Open Class libraries and frameworks. IText encapsulates Unicode
characters and any associated styling information, and fully supports mixed style
runs. IText keeps the styles with the characters, so you can pass text strings
between objects and applications without loss of styling information.

IText is the primary string format supported by the Open Class International
Framework. It is suitable for strings of any length, from a few characters to
document-length strings. IText was also designed so that you can use it for unstyled
strings without incurring the overhead in object size or performance associated with
the styling mechanism.

Many IText functions take a range that specifies the subset of characters to operate
on. The range is defined by an offset and a character count, where the offset of the
first character in the object is 0. To specify an insertion position, specify the offset of
the character immediately following the position where the new text will be inserted.

208 IOC Library User’s Guide

Storage Mechanism
IText manages its own storage. The characters and styles are stored in separate
objects that the IText mechanism creates, deletes, and shares transparently. When
an IText object is constructed with a char-based format, it stores the char-based
data internally and transcodes it to Unicode on demand. IText itself is very small
and has very fast copy performance. This allows you to do the following:

v Include IText objects directly as data members in other objects. Your classes
should have pointers or references to IText objects only if you want several
objects to all see a change to a particular IText object.

v Pass IText parameters to functions as values rather than references, unless the
IText object is owned by another object.

v Return IText objects from functions as return values rather than with fill-in
parameters, unless the IText object is owned by another object.

v Use IText objects as local variables—that is, do not use the new and delete
operators.

The underlying storage object can be shared by multiple IText instances. It is
reference counted and uses copy-on-write semantics. For example, when an IText
object is copied, the actual storage is not duplicated—the reference count is simply
increased. Note that even while they share storage, two IText objects behave as
two distinct objects. They stop sharing storage when one is modified. This is
guaranteed to be true even in multithreaded situations.

The framework manages this mechanism for you. However, you should be aware of
it when using classes such as IFastTextIterator, which do not consider the
underlying storage mechanism.

The storage mechanism handles both short and large strings efficiently. The storage
allocation strategy changes dynamically as appropriate for the size of the string. For
small strings, the characters are stored in a single, contiguous, heap-allocated
array, resized only when necessary. Longer strings are broken up into
non-contiguous storage blocks, or chunks, as illustrated in this figure:

The IText function storage_chunk provides access to these chunks of text. You
specify a character offset, and the function returns a pointer to the chunk of storage
containing that offset. If the string is stored in a single contiguous block, the function
returns a pointer to that block.

Chapter 6. Internationalization and Text 209

“Text Framework” on page 206
“Text Creation and Manipulation” on page 207
“Text Boundaries” on page 207
“Strings and Buffers”
“String Formats” on page 213
“Text and Style Run Iteration” on page 217
“Summary of Text Framework Classes” on page 242

Strings and Buffers
Overview of Strings and Buffers
You can store and manage strings using the string and buffer classes. There are
two types of string classes, two types of buffer classes, and two support classes.
The two string classes, IString and I0String, are the main classes. The buffer and
support classes are used to implement the string classes.

The IString class provides a wide range of string handling capabilities. Many of the
IString operators and functions are overloaded to support both IStrings and arrays
of characters as return types and arguments. For example, the comparison
operators (==, >, <, >=, <=, !=) all support either two IString operands or one IString
and one array of characters operand. The array of characters operand can be on
either side of the comparison operator.

If you are using the string classes, DBCS support is nearly automatic and
transparent. C-runtime style DBCS support is turned on by default.

To disable DBCS support on Windows, you have to explicitly call
disableInternationalization.

The support classes, IStringEnum and IStringTest, provide data types and testing
functions that are used in the string and buffer classes.

String Buffers
When you create an object of a string class, the actual characters that make up the
string are not stored in the string object. Instead, the characters are stored in an
object of a buffer class.

The use of a buffer object is transparent to you when using the string classes. A
correctly sized buffer is automatically created when you create a string object. The
buffer is destroyed when a string object is destroyed. When you manipulate or edit
a string, you are actually manipulating and editing the buffer object that contains the
characters of the string.

String Classes
The string classes define a data type for strings and provide member functions that
let you perform a variety of data manipulation and management activities. They
provide capabilities far beyond those available with standard C strings and the
string.h library functions.

The string classes have the following capabilities:

v String buffers are handled automatically.

v Strings can contain both SBCS and DBCS (including UTF-8) characters.

v Strings can be indexed by character or by word.

210 IOC Library User’s Guide

v Strings can contain null characters. (There are no restrictions on the contents of
a string object.)

Member functions of the string classes allow you to do the following:

v Use strings in input and output

v Access information about strings

v Compare strings

v Test the characteristics of strings

v Search for characters or words within a string

v Manipulate and edit strings

v Convert strings to and from numeric types

v Format strings by adding or removing white space

The two string classes, IString and I0String, are identical except for the method
each uses to index its characters. The characters of an IString object are indexed
beginning at 1. I0String characters are indexed beginning at 0. The string class you
should use depends on which indexing scheme you prefer or find easier to
implement.

Objects of IString and objects of I0String can be freely intermixed in a program.
Objects of one class can be assigned objects of the other. Arguments that require
an object of one will accept objects of the other. You will only notice a difference
between an IString and an I0String when you are using functions that use or return
a character index value.

Each IString function has a corresponding I0String function with the same name.
The I0String version of each function accepts the same arguments and has the
same return type as the IString version except that all parameters of type IString
become I0String.

String Comparison
The IStringTest class lets you define the matching function used in the searching
and testing functions of the string and buffer classes. When a search string is
passed to a searching or testing function, the search string and the string object are
compared on a character-by-character basis. The characters are considered to
match if they are identical. The IStringTest class allows you to define when
characters are considered to match.

For example, you can implement a string test that locates a given occurrence of a
particular character in a string:

//Using the IStringTest class

#include <istring.hpp>
#include <iostream.h>

class Nth : public IStringTest

{
char key; // Specifies the character to look for
unsigned count; // Specifies which occurrence to find
public:

//
// Construct an Nth object as follows:
// 1. Create an IStringTest instance whose function type is user,
// with a null character to start;
// 2. Initialize the count to n
// 3. Initialize the key to c

Chapter 6. Internationalization and Text 211

//
Nth(char c, unsigned n)
: IStringTest(user,0), count(n), key(c) {}

//
// test function: accepts an int (the character to look for)
// checks if the character matches the key
// if so, decrements count
// eventually, count will equal zero if enough matches are found,
// so "return !count" will return true (-1)
// otherwise, "return !count" will return a value other than -1

virtual bool test (int c) const
{
if (c == key) // if it matches,
((Nth*)this)->count--; // decrement count
return !count; // return complement of count

// will be true (-1) if count==0
}

};

int main(int argc, char *argv[])

{
IString text=“this is a test string”;
cout << “The fourth appearance of the letter t in the string:\n”

<< text << '\n' << “is at position ”
<< text.indexOf(Nth('t',4)) << endl;

return 0;
}

This program produces the following output:
The fourth appearance of the letter t in the string:
this is a test string
is at position 17

A derived template class, IStringTestMemberFn, is provided to support the use of
the IStringTest class with any function that accepts its objects as an argument.

A constructor for IStringTest accepts a pointer to a C function. The C function must
accept an integer as an argument and return a boolean. Such functions can be
used anywhere an IStringTest can be used. Note that this is the type of the
standard C library functions that check the type of C characters, for example,
isalpha() and isupper().

String Indexes
Objects of the string classes are arrays of characters. There are two types of
indexes used with the arrays. The first is a character index. Each character is
numbered from left to right starting at the number 1 in the IString class and the
number 0 in the I0String class. Therefore, in the IString ″The dog is brown″, the
letter ″i″ has an index value of 9. In the I0String ″The dog is brown″, the letter ″i″
has an index value of 8.

The second type of index is the word index. In the word index, each
white-space-delimited word is numbered from left to right starting at the number 1.
The word index is the same for IString objects and I0String objects. Therefore in the
IString ″The dog is brown″, the word ″is″ has an index value of 3. In the I0String
″The dog is brown″, the word ″is″ also has an index value of 3.

The only difference between objects of the IString class and objects of the I0String
class is the starting value for the character index.

212 IOC Library User’s Guide

To optimize the IString+= operation, the IBuffer/IDBCSBuffer class now allocates
memory in 32 bytes chunk(s). To turn this optimization off, you can set the static
bool IBuffer::is32BytesAligned to false. By default, if IBuffer::setDefaultBuffer() is
called, IBuffer::is32BytesAligned is set to false unconditionally.

“Text Framework” on page 206
“Text Creation and Manipulation” on page 207
“Text Boundaries” on page 207
“Text Storage” on page 208
“String Formats”
“Text and Style Run Iteration” on page 217
“Summary of Text Framework Classes” on page 242
“DBCS and National Language Support” on page 204

String Formats
IText provides full interoperability with the char-based string formats char* and
IString, allowing you to do the following:

v Construct IText objects from null-terminated char arrays and from IString objects
(IText also provides constructors that take both null-terminated-terminated with
UUnicodeSpecial::kNull-and non-terminated ioc::unichar_t arrays)

v Return the characters in an IText as a char array or an IString object

v Use IText where char* or IString is called for

v Use char* or IString where IText is called for

IText uses the transcoding facility provided by the International Framework to
convert data between char and Unicode data. IText assumes the char-based format
is the default character encoding set for the host. This varies based on the platform
and any locale settings for the system.

String Size and Capacity
IText follows the ISO convention of using size_t (generally equivalent to unsigned
long) to represent text lengths and offsets.

In z/OS, C/C++ defines size_t as an unsigned int.

IText defines two typedefs equivalent to size_t:

Type definition Description

length_type Represents a character count. length_type
values always represent the number of
characters, not the number of bytes. IText
also uses a special length_type value, npos,
to represent the number of characters
between a specified starting offset and the
end of the string. For example, a starting
offset of 0 and a length of npos refers to the
whole string.

offset_type Represents the position of a character,
zero-based from the first character in the
string-that is, the position of the first
character is at offset_type value 0, and so
on.

Chapter 6. Internationalization and Text 213

“Text Framework” on page 206
“Text Creation and Manipulation” on page 207
“Text Boundaries” on page 207
“Text Storage” on page 208
“Strings and Buffers” on page 210
“Text and Style Run Iteration” on page 217
“Summary of Text Framework Classes” on page 242

Comparison of IText and IString
IString is the the IBM Open Class primary char-based string class, while IText is the
primary ioc::unichar_t (Unicode) based string class. Therefore, one string class is
not meant to replace the other. Although IText is usually a better choice, the
differences are summarized here:

Use IText for the following tasks:

v Storing styled text

v Storing international (non-ASCII) text

v Performing powerful language-sensitive comparison

v Storing really long runs of text

Note that IText has ties to the IBM Open Class Localization Framework.

Use IString for the following task:

v Performing many char*-based system calls: this would force IText to create
unnecessary overhead by transcoding repeatedly.

“Text Framework” on page 206
“Locales in Internationalization” on page 166

“Create an IText Object from char or IString Data”
“Create Strings” on page 221
“Create a Unicode Application” on page 246

Work with IText Objects

Create an IText Object from char or IString Data
IText provides constructors that initialize IText objects from null-terminated char
arrays and from IString objects. The text is transcoded from char data into Unicode
data. The framework assumes that the char data is encoded using the default
encoding system for the current host.

To create an IText from char* or IString data, simply pass the char data to the IText
constructor:

char* string = “Hello World!”;

IText unicodeString(string);

“Text Framework” on page 206

214 IOC Library User’s Guide

“Create a Styled Text String”
“Edit Character Data in an IText Object”
“Extract char* Data from an IText Object” on page 216
“Iterate through Characters in an IText Object” on page 218
“Iterate through Style Runs in an IText Object” on page 219
“Query and Modify Styles in an IText Object” on page 220

Create a Styled Text String
To add styles to characters or paragraphs in an IText object, create the appropriate
styles with the correct values and apply them to a specific character range:

1. Instantiate a style object for the style you want to apply, passing in an
appropriate value.

2. (Optional) Add the styles to a style set.

3. Call the IText::addStyles function, specifying the range of characters to apply the
styles to.

For example:
IText styledString(“Hello World!”);

// Create a style set
ITextStyleSet stylesToAdd;

// Add styles to the style set
stylesToAdd.add(ITextPointSizeStyle(12));
stylesToAdd.add(ITextTypefaceStyle(“Courier”));
stylesToAdd.add(ITextUnderlineStyle(true));

// Apply styles to the entire string
styledString.addStyles(stylesToAdd, 0, IText::npos);

// Apply another style only to the first word

styledString.addStyles(ITextUnderlineStyle(true), 0, 5);

You apply paragraph styles the same way, except you don’t have to specify the
character range exactly. Specify one or more characters in the paragraph you want
to apply styles to, or specify a character range extending across multiple
paragraphs. IText automatically extends the paragraph styles to apply to all
paragraphs that contain any character offsets you specify. For example:

IParagraphJustificationStyle
pstyle(IParagraphJustificationStyle::kCenter);

styledString.addStyles(pstyles, 0, 1);

“Text Framework” on page 206

“Create an IText Object from char or IString Data” on page 214
“Edit Character Data in an IText Object”
“Extract char* Data from an IText Object” on page 216
“Iterate through Characters in an IText Object” on page 218
“Iterate through Style Runs in an IText Object” on page 219
“Query and Modify Styles in an IText Object” on page 220

Edit Character Data in an IText Object
IText provides a set of functions for character editing: append and operator+=,
insert, insert_and_propagate_styles, replace, and erase. The functions that add

Chapter 6. Internationalization and Text 215

characters take either styled or unstyled text. The text that is added maintains its
character styling information (raw Unicode characters are considered to be
unstyled). Paragraph styles are propagated according to the mechanism described
in Style Propagation.

The exception is that characters inserted with the insert_and_propagate_styles
function take on the styles of the text they are inserted into.

For example, this code demonstrates some simple text editing functions:
IText string(“Now is the time for all men to come swiftly to the
aid of the party.”);

// Delete “swiftly”
string.erase(36, 8);

// Add “good” before “men”
string.insert(24, IText(“good”));

// Change “the party” to “their country”
string.replace(58, 6, IText(“ir country”));

// Create a copy of a substring of the text and append more
characters
IText newString = string.substr(0, 15);
newString += IText (“for me to go!”);

“Text Framework” on page 206
“Style Propagation” on page 239

“Create an IText Object from char or IString Data” on page 214
“Create a Styled Text String” on page 215
“Extract char* Data from an IText Object”
“Iterate through Characters in an IText Object” on page 218
“Iterate through Style Runs in an IText Object” on page 219
“Query and Modify Styles in an IText Object” on page 220

Extract char* Data from an IText Object
IText provides simple conversion operators that can convert character data in an
IText object into a null-terminated char array or an IString object. The text is
transcoded from Unicode data into char data. The framework assumes that you
want the char data to be encoded in the default encoding system for the current
host.

To extract char data from an IText object, simply assign it to a variable of the type
you want (char* or IString):

IText unicodeString(“Hello World!”);
const char* charData;
charData = unicodeString;

When you extract char data from an IText object, keep in mind that the IText
conversion functions return a pointer to an internal storage object. The IText object
maintains ownership of this storage, which is why the functions return a const char
array. The return value is only guaranteed to be good until the underlying data in
the IText is modified. You should not allocate storage to receive the character data,
nor should you cast away the const and modify the characters.

216 IOC Library User’s Guide

If you need a modifiable copy of the character data, allocate your own storage and
copy the characters:

IText unicodeString(“Hello World!”);
char* modifiableCharData = new char[unicodeString.length()];
strcpy(modifiableCharData, unicodeString);

// Can modify the char data without affecting the underlying IText storage
modifiableCharData[0] = ′J';
const char* moreCharData;

// The underlying IText still contains “Hello World!”
moreCharData = unicodeString;

“Text Framework” on page 206

“Create an IText Object from char or IString Data” on page 214
“Create a Styled Text String” on page 215
“Edit Character Data in an IText Object” on page 215
“Iterate through Characters in an IText Object” on page 218
“Iterate through Style Runs in an IText Object” on page 219
“Query and Modify Styles in an IText Object” on page 220

Text and Style Run Iteration
Unicode Text Framework provides a set of iterators for accessing the character data
in an IText object. These iterators all have the properties of a random-access
iterator as described by most recent version of the C++ standard.

Character Iteration
The framework provides five iterators for iterating through the characters in an IText
object. These iterators are compatible with the iterator classes provided by the C++
Standard Library:

Class Description

ITextIterator Provides iteration through the characters in
an IText object.

IReverseTextIterator Provides backwards iteration through the
characters in an IText object.

IConstTextIterator A variation on ITextIterator that doesn’t allow
you to modify the characters.

IReverseConstTextIterator A variation on IReverseTextIterator that
doesn’t allow you to modify the characters.

IFastTextIterator Provides faster iteration than the iterators
listed above but fewer safety assurances.
For example, the iterator is not guaranteed to
stay valid if the underlying text is modified.

These iterators all follow the protocol for random-access iterators. You can start the
iteration at any position in the IText object and iterate forward, backward, and so on.
With the exception of IFastTextIterator, you should not construct iterators directly,
but use the IText iterator functions begin, end, rbegin, and rend.

Chapter 6. Internationalization and Text 217

The iterators use the class ICharacterReference to return non-const references to
ioc::unichar_t values. This ensures that both the reference-counting mechanism
used for IText storage and the paragraph style propagation are not disturbed.

If you want to use IFastTextIterator, construct it from another text iterator.
IFastTextIterator is different than the other text iterators in that it doesn’t consider
the styling mechanism or the shared storage mechanism. You can use
IFastTextIterator when you want faster iteration. However, if you want to modify
characters while using an IFastTextIterator, you need to ensure that the IText you
are iterating over does not share storage with another IText. When using an
IFastTextIterator:

v Do not initialize another IText object from the IText under iteration or assign the
IText to another IText while the IFastTextIterator is in effect.

v Do not call non-const functions on the IText under iteration while the
IFastTextIterator is in effect.

v Keep in mind that IFastTextIterator ignores styles when iterating over styled text.
Paragraph styles will not be repropagated, and character styles will not be
manipulated with their associated characters.

v Set the willWrite parameter to false if you want to use the iterator for read-only
access of characters.

Style Run Iteration
The framework provides an additional iterator, ITextStyleRunIterator, that lets you
iterate over the style runs in a styled IText object. A style run is a range of
characters with identical styling information—that is, the same set of style objects
with the same values. For example, the text string shown here has four style runs:

When using ITextStyleRunIterator, you can specify whether to iterate over character
styles, paragraph styles, or both. The iterator considers both types of styles by
default.

When you construct the iterator, it points to the first style run.

“Text Framework” on page 206
“Text Creation and Manipulation” on page 207
“Text Boundaries” on page 207
“Text Storage” on page 208
“Strings and Buffers” on page 210
“String Formats” on page 213
“Summary of Text Framework Classes” on page 242

“Iterate through Characters in an IText Object”
“Iterate through Style Runs in an IText Object” on page 219
“Query and Modify Styles in an IText Object” on page 220

Iterate through Characters in an IText Object: The Unicode Text Framework
provides a full set of classes for iterating over characters in an IText object. Use

218 IOC Library User’s Guide

ITextIterator or IConstTextIterator to iterate forwards, or IReverseTextIterator or
IReverseConstTextIterator to iterate backwards through the characters in an IText
object. You can also use IFastTextIterator when you want faster performance and
don’t need as many safety checking mechanisms to guarantee the validity of the
iterator.

The following steps describe how to use a text iterator:

1. Call IText::begin (or other IText iterator functions as appropriate) to instantiate
the iterator.

2. Use the iterator operators ++ and — to iterate forwards and backwards through
the characters.

When creating an IConstTextIterator from a non-const IText, do not call ((const
IText)txt).begin() or you will get an invalid iterator (due to the temporary IText
created by the compiler). Instead,
call ((const IText&)txt).begin() or better yet, use const_cast(text).begin().

For example, this code shows how to use an iterator to strip whitespace characters
from the beginning of a text object called someText:

ITextIterator iter;

// IUnicode::isASpace(*iter) checks whether the
// character currently pointed to by the iterator is
// a space character (a space, tab, and so on).

for (iter = someText.begin();
iter < someText.end() &&

!IUnicode::isASpace(*iter);
++iter)

{
someText.erase(someText.begin(), iter);

}

“Text Framework” on page 206

“Create an IText Object from char or IString Data” on page 214
“Create a Styled Text String” on page 215
“Edit Character Data in an IText Object” on page 215
“Extract char* Data from an IText Object” on page 216
“Iterate through Style Runs in an IText Object”
“Query and Modify Styles in an IText Object” on page 220

Iterate through Style Runs in an IText Object: The Unicode Text Framework
provides ITextStyleRunIterator for iterating through the style runs in an IText object.
To use ITextStyleRunIterator:

1. To create the ITextStyleRunIterator, pass the constructor the IText object you
want to iterate over.

2. Use the iterator operators ++ and — to move forward and backward through
style runs.

3. Extract the styles on the current style run. The iterator’s operator-> lets you call
the ITextStyleSet::extract function for the current style run’s style set.

Chapter 6. Internationalization and Text 219

4. Use the ITextStyleRunIterator functions runStart and runLength to get the extent
of the current style run.

For example, this code shows how to use an iterator to modify the point size for
each style run, or add a point-size style if there is none:

ITextPointSizeStyle size;
ITextStyleRunIterator iter(someText);
for (; iter; ++iter)
{
if (iter->extract(size))
size.setPointSize(size.pointSize() + 3);
else
size.setPointSize(6);
someText.addStyles(size, iter.runStart(), iter.runLength());
}

“Text Framework” on page 206

“Create an IText Object from char or IString Data” on page 214
“Create a Styled Text String” on page 215
“Edit Character Data in an IText Object” on page 215
“Extract char* Data from an IText Object” on page 216
“Iterate through Characters in an IText Object” on page 218
“Query and Modify Styles in an IText Object”

Query and Modify Styles in an IText Object
The Unicode Text Framework lets you access the styles associated with a given
character or range, and add to or remove those styles.

v Use IText::isStyled to determine whether the IText object has any associated
styling information.

v Use IText::stylesAt to access the set of styles associated with a specific character
range.

v Use IText::maximumStyleSpan to access the range of characters with specific
styles.

v Use IText::addStyles or IText::removeStyles to add and remove styles to or from
a specific character range.

If you specify a type of style to remove, removeStyles removes any style of that
type. It does not look at the value of the style you specified to remove. For
example, if you specify to remove ITextBoldfaceStyle(true), removeStyles removes
any boldface style whether it is set to true or false.

This code shows how to query the styles at a particular point in the IText object
someText and modify the style values:

IText::offset_type runOffset;
IText::length_type runLength;

const ITextStyleSet* setPtr;
ITextPointSizeStyle size;

// Get the styles on the first style run.

// The offset and length of the run are returned.
setPtr = someText.stylesAt(0, runOffset, runLength);

// If the style run contains a point size style, increment its

220 IOC Library User’s Guide

// value by 3
if (setPtr.extract(size))

size.setPointSize(size.pointSize() + 3);

// If the style run has no point size style, add one
else

size.setPointSize(6);

// Apply the new point size style to the entire style run
someText.addStyles(size, runOffset, runLength);

To look for characters with specific styles, you can use IText::maximumStyleSpan.
For example, this code shows how to look for all style runs of bold text, and
underline those characters:

IText::offset_type cursorOffset = 0;
IText::offset_type spanOffset;
IText::length_type spanLength;
ITextStyleSet set;
ITextBoldfaceStyle bold(true);
ITextUnderlinStyle line(true);

while (cursorOffset < someText.length())
{

// If the current character is boldface, underline the entire
// style run
if (someText.maximumStyleSpan (cursorOffset, bold,

spanOffset, spanLength))
someText.addStyles(line, spanOffset, spanLength);

cursorOffset += spanLength;

}

You can also use ITextStyleRunIterator to access style runs.

“Text Framework” on page 206
“Styles and Style Sets” on page 236
“Transcoding Classes” on page 180
“Text and Style Run Iteration” on page 217

“Create an IText Object from char or IString Data” on page 214
“Create a Styled Text String” on page 215
“Edit Character Data in an IText Object” on page 215
“Extract char* Data from an IText Object” on page 216
“Iterate through Characters in an IText Object” on page 218
“Iterate through Style Runs in an IText Object” on page 219

Work with IString Objects

Create Strings
You can create IStrings using constructors. You can use IString constructors that
construct null strings, that accept a numeric argument and convert it into a string of
numeric characters, or that translate one or more characters into an IString. You
can also create a single string out of up to three separate buffers, whose contents
are concatenated into the created IString object. The following example shows
some of the above ways of creating IString objects:

Chapter 6. Internationalization and Text 221

#include <istring.hpp>

int main(int argc, char *argv[])
{

IString Number1(123); // --> Number1 =“123”
IString Number2(123.12); // --> Number2 =“123.12”
IString Character('a'); // --> Character =“a”
IString String1(“a”); // --> String1 =“a”
IString String2(“and”); // --> String2 =“and”
IString String3(“a\0d”); // --> String3 =“a”
return 0;

}

Note that the last string (String3) is initialized with only the first byte of quoted text.
The null character in the char* constructor argument is interpreted by the compiler
as a terminating null. However, the IString class does support null bytes within
strings. To construct String3 as the example intended, you could write:

//...
IString String3(“and”);
String3[2]='\0';

If this string is later copied to another string, the null character and following
characters are also copied:

IString String4=String3;
String4[2]='N'; // --> String4 =“aNd”

“Text Framework” on page 206

“Copy Strings”
“Concatenate Strings” on page 224
“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232
“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Copy Strings
You can copy IStrings using copy constructors, assignment operators, and substring
functions.

The IString assignment operator and copy constructor both copy one string to
another string. One of the strings can be an array of characters, or both may be
IString objects. The IString assignment operator and copy constructor offer the
following advantages over the strcpy and strdup functions provided by the C string.h
library:

v When an IString object is copied, a new copy of the string is not made. Instead,
the two strings point to the same buffer location. The object is only copied if one
of the strings is changed. This means that, for strings that are copied but where
neither the source string nor the copy is subsequently changed, performance is
improved by the amount of time it would have taken to make the new copy.

222 IOC Library User’s Guide

v The notation is simple and intuitive. To copy String1 into String2, you simply code
String2=String1. With strings defined using the traditional char* method, such an
assignment merely copies a pointer to the original string. With IString objects, the
assignment copies each byte of the string into the new string.

v You do not have to determine the length of the source string and allocate
sufficient storage to store it in the target string before the assignment. IString
takes care of allocating the storage for you, whether the target string is being
constructed within the assignment or has already been constructed. This reduces
the risk of memory violations. In the following example, String2 is constructed
and initialized, and then copied to (its original contents are overwritten), while
String3 is copy-constructed to contain a copy of String1. Notice that String2’s
length is extended by the assignment operation.

IString String1=“A longer string than String2”;
IString String2=“A short string”;
IString String3=String1; // initialized to String1
String2=String1; // extended to fit String1

v The string being copied can contain null characters anywhere within it, and the
entire string will be copied.

v If you accidentally create an array of characters without the terminating null, the
strcpy function may continue copying past the storage allocated for the string.
This can cause storage violations, or, at the least, it can corrupt the data in the
target string. The length of IString objects is not determined by a terminating null,
so storage violations and corrupt target strings are less likely.

Creating Substrings of Strings
You can use the subString function to return a new IString object containing a
portion of another IString. This function lets you create an IString containing the
leftmost characters, rightmost characters, or characters in the string’s middle. The
following example shows calls to subString that create substrings with leftmost,
rightmost, or middle characters:

// Using the subString method of IString

#include <iostream>
#include <istring.hpp>

int main(int argc, char *argv[])
{

IString All(“This is the entire string.”);

// Left -> subString(1, length)
IString Left=All.subString(1,5);

// Middle -> (startpos, length)
IString Middle=All.subString(6,14);

// Right -> (string length - (substring length - 1))
IString Right=All.subString(All.length()-6);

std::cout << “<” << All << “>\n”
<< “<” << Left << “>\n”
<< “<” << Middle << “>\n”
<< “<” << Right << “>” << std::endl;

return 0;
}

This program produces the following output:
<This is the entire string.>
<This >
<is the entire >
<string.>

Chapter 6. Internationalization and Text 223

“Text Framework” on page 206

“Create Strings” on page 221
“Concatenate Strings”
“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232
“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Concatenate Strings
The IString class defines an addition operator (+) to allow you to concatenate two
words together. An addition assignment operator (+=) lets you assign the result of
the concatenation to the left operand. The copy() member function lets you create
an IString consisting of multiple copies of itself or of another string. The following
example shows ways of concatenating text onto the start or end of an IString:

// Concatenating strings

#include <iostream.h>
#include <istring.hpp>

int main(int argc, char *argv[])
{

IString Str1=“Let ”;
IString Str2=“us ”;
IString Str3=“concatenate ”;
IString Str4=“repeatedly ”;

IString Str5=Str1+Str2; // Add Str1 and Str2 and store in Str5
Str5+=Str3; // Add Str3 to Str5
Str4.copy(3); // Copy Str4 several times onto itself
Str5+=Str4; // Add Str4 to Str5
cout << Str5 << endl; // Write String 5
return 0;

}

This program produces the following output:
Let us concatenate repeatedly repeatedly repeatedly

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222
“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232

224 IOC Library User’s Guide

“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Extend Strings
With arrays of characters, unless you allocate more storage than originally required
for a string, you can only extend a string by allocating a new chunk of storage,
moving the existing string into the new area, and extending it there.

IString objects are automatically extended for you whenever an IString operator or
function requires the extension. This lets you spend more time coding useful
function, and less time trying to track down the source of memory violations or data
corruption. You can even use the subscript operator to assign a value to a position
beyond the end of the string. The following example, by indexing past the end of
ShortString, causes the string to be padded with blanks up to position 119, and the
letter “a” is added at position 120:

IString ShortString=“A short string”;
ShortString[120]='a';

The + and += operators, the assignment operator, and all member functions that
change the contents of a string automatically allocate additional storage for the
string if that storage is required. This can drastically reduce the amount of
string-handling code you need to write.

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222
“Concatenate Strings” on page 224
“Format Strings”
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232
“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Format Strings
You can insert padding (white space) into strings so that each string in a group of
strings has the same length. The center, leftJustify, and rightJustify functions all do
this; their names indicate where they place the existing string relative to the added
white space. You provide the final desired length of the string, and the function adds
the correct amount of white space (or removes characters if the string is longer than
the final length you specify). For example:

// Padding IStrings

#include <istring.hpp>
#include <iostream>

int main(int argc, char *argv[])
{

IString s1=“Short”, s2=“Not so short”,
s3=“Too long to fit in the desired field length”;

s1.rightJustify(20);
s2.center(20);

Chapter 6. Internationalization and Text 225

s3.leftJustify(20);
std::cout << s1 << '\n' << s2 << '\n' << s3 << std::endl;
return 0;

}

This program produces the following output:
Short

Not so short
Too long to fit in t

If a string is too wide, you can strip leading or trailing blanks using the strip...
functions:

// Using the strip... functions of IString

#include <istring.hpp>
#include <iostream>

int main(int argc, char *argv[])
{

IString s1, s2, s3, Long=“ Lots of space here ”;
s1 = s2 = s3 = Long;
s1.stripLeading();
s2.stripTrailing();
s3.strip();
std::cout << “>” << Long << “<\n”

<< “>” << s1 << “<\n”
<< “>” << s2 << “<\n”
<< “>” << s3 << “<” << std::endl;

return 0;
}

This program produces the following output:
> Lots of space here <
>Lots of space here <
> Lots of space here<
>Lots of space here<

You can also change the case of an IString to all uppercase or all lowercase:
// Changing the case of IStrings

#include <iostream>
#include <istring.hpp>

int main(int argc, char *argv[])
{

IString Upper=“MANY of THESE are UPPERCASE CHARACTERS”;
IString Lower=“Many of these ARE lowercase characters”;
Upper.change(“MANY”,“NONE”).lowerCase();
Lower.change(“Many”,“None”).upperCase();
std::cout << Upper << '\n' << Lower << std::endl;
return 0;

}

This program produces the following output:
none of these are uppercase characters
NONE OF THESE ARE LOWERCASE CHARACTERS

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222

226 IOC Library User’s Guide

“Concatenate Strings” on page 224
“Extend Strings” on page 225
“Determine String Lengths and Word Counts”
“Do String Input and Output”
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232
“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Determine String Lengths and Word Counts
You can determine not only the length of a string, but the number of words within
the string, or the length of a particular word in the string. The length of a string is
not affected by any null characters you insert in the middle of the string. (The strlen
function of string.h treats any null character in an array of characters as a
terminating null.)

The following descriptions assume that ThisString contains the text “This string has
five words”.

The length and size functions both return the length of an IString. For example,
ThisString.size() returns the value 26, as does ThisString.length().

To determine the number of words in a string, use the numWords member function.
For example, ThisString.numWords() returns the value 5.

To determine the length of a particular word, use the lengthOfWord member
function. For example, ThisString.lengthOfWord(3) returns the value 3.

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222
“Concatenate Strings” on page 224
“Extend Strings” on page 225
“Format Strings” on page 225
“Do String Input and Output”
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232
“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Do String Input and Output
The IString class overloads the input and output operators of the USL I/O Stream
Library and the C++ Standard I/O Stream Library, depending on the user’s choice.
This allows you to extract IString objects from streams and insert IString objects
into them. The input operator reads characters from the input stream until a
white-space character or EOF is encountered. The IString class also defines a
member function to read a single line from an input stream. The following example
shows uses of the input and output operators for IString and the lineFrom function:

// Using the IString I/O operators
// and the lineFrom function

Chapter 6. Internationalization and Text 227

#include <istring.hpp>
#include <iostream>

int main(int argc, char *argv[])
{

IString Str1, Str2, Str3;
Str1=“Enter some text:”;
char test[80];

// Write prompt
std::cout << Str1;

// Get input
std::cin >> Str2;

// This only reads in one word of text, so we
// should check to see if this was the only word
// on the line:
if (std::cin.peek()!='\n') {

// there's more text on this line so ignore it
std::cin.ignore(1000,'\n');

}

// Change prompt
Str1.insert(“more ”,Str1.indexOf(“ text:”));

// Write prompt again
std::cout << Str1;

// Get line of input
Str3=IString::lineFrom(std::cin,'\n');

// Write output
std::cout << “First word of first input: ”

<< Str2 << '\n'
<< “Full text of second input: ”
<< Str3 << std::endl;

return 0;
}

This example produces the output shown below in regular type, given the input
shown in bold:
Enter some text:Here is my first string
Enter some more text:Here is my second string
First word of first input: Here
Full text of second input: Here is my second string

Note that, although null characters are allowed within an IString object, a null
character in an input string is treated as the end of the input, and a null character in
an IString being written to an output stream ends the output of that IString.

“Text Framework” on page 206
“Chapter 4. USL I/O Streaming” on page 93

“Create Strings” on page 221
“Create Strings” on page 221
“Copy Strings” on page 222
“Concatenate Strings” on page 224
“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227

228 IOC Library User’s Guide

“Find Words or Substrings within Strings”
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232
“Convert between Strings and Numeric Data” on page 234

Find Words or Substrings within Strings
A wide range of functions are available to let you find words, substrings, patterns, or
individual characters within a string. You can even do wildcard searches: for
example, you can search through a string to find a substring that begins with the
letters “Ar” followed by one or more characters, followed by the letters “rk”.

The following example shows a number of the searching functions available for
IString objects. Comments describe the type of search operation being carried out.

// Searching for substrings

#include <iostream>
#include <istring.hpp>

int main(int argc, char *argv[])
{

IString
Str1=“This string contains some sample text in English.”;

IString
Str2=Str1.subString(27); // positions 27 and following:

// “sample text in English.”
std::cout << “The string under consideration is:\n\n”

<< Str1 << “\n\n”;

// 1. Count the number of occurrences of a substring
// within the string
std::cout << “The substring \”in\“ occurs ”

<< Str1.occurrencesOf(“in”)
<< “ times in the string.\n”;

// 2. Find the first occurrence of a substring:
// (Note that the substring can be a char, char*,
// or IString value)
std::cout << “The letter 'x' first occurs at position ”

<< Str1.indexOf('x') << “.\n”;

// 3. Find the first occurrence of any letter of
// those specified:
std::cout

<< “One of the letters q, r, or s first appears at position ”
<< Str1.indexOfAnyOf(“qrs”) << “.\n”;

// 4. Find the first occurrence of any letter
// other than those specified:
std::cout << “The first letter that is not in \”Think\“ ”

<< “appears at position ”
<< Str1.indexOfAnyBut(“Think”) << “.\n”;

// 5. Find the index of a word
std::cout << “The third word starts at position ”

<< Str1.indexOfWord(3) << “.\n”;

// 6. Find a match to a phrase, and return the
// position of the first matching word
std::cout << “The phrase \”“ << Str2

<< ”\“ starts at word number ”
<< Str1.wordIndexOfPhrase(Str2)
<< “ of the string.\n”;

// 7. Do a wildcard search to see if the string
// starts with “Th”, contains “co”, and ends

Chapter 6. Internationalization and Text 229

// with “sh.”
std::cout

<< “Does the string match the wildcard search string ”
<< “\”Th*co*sh.\“?\n”;

if (Str1.isLike(“Th*co*sh.”)) std::cout << “Yes.”;
else std::cout << “No.”;

std::cout << std::endl;
return 0;

}

This program produces the following output:
The string under consideration is:

This string contains some sample text in English.

The substring “in” occurs 3 times in the string.
The letter 'x' first occurs at position 36.
One of the letters q, r, or s first appears at position 4.
The first letter that is not in “Think” appears at position 4.
The third word starts at position 13.
The phrase “sample text in English.” starts at word number 5 of the string.
Does the string match the wildcard search string “Th*co*sh.”?
Yes.

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222
“Concatenate Strings” on page 224
“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Replace, Insert, and Delete Substrings”
“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Replace, Insert, and Delete Substrings
The ability to manipulate the contents of an IString is one of the greatest
advantages of the IString class over the traditional method of using string.h
functions to manipulate arrays of characters. Consider, for example, a function that
perform the following changes on a string. Issues that you need to address when
using arrays of characters, but that are handled for you by the IString class, are
shown in parentheses:

1. Replace all occurrences of Blue with Yellow (string must be expanded by two
characters for each replacement, and text after the replacement must be shifted
out).

2. Replace all occurrences of Orange with Pink (string must be shortened by two
characters for each replacement).

3. Delete the sixth word of the string. (How are words delimited? By spaces?
Carriage returns? Tab characters? What about multiple adjacent whitespace
characters?)

4. Insert the word Dark as the fourth word or at the end of the string if the string
has fewer than three words. (String must be extended. How are words
delimited? Do you add a space before or after the word?).

230 IOC Library User’s Guide

You can easily handle the above requirements using IString member functions. The
sample function fixString() below implements the requirements. Numbered
comments correspond to the numbers of the requirements:

// Replace, insert, and delete substrings

#include <iostream.h>
#include <istring.hpp>

void fixString(IString&);

int main(int argc, char *argv[])
{

IString
Str1=“Light Blue and Green are nice colors. ”;

Str1+=“But so are Red and Orange.”;
cout << Str1 << endl;
fixString(Str1);
cout << Str1 << endl;
return 0;

}

void fixString(IString &myString) {

// 1. Change Blue to Yellow
myString.change(“Blue”, “Yellow”);

// 2. Change Orange to Pink
myString.change(“Orange”, “Pink”);

// 3. Remove words, starting at word 6,
// for a total of 1 word.
myString.removeWords(6,1);

int Word4=myString.indexOfWord(4);

// 4. Insert “Dark” as fourth word
// or at the end of string if string
// has fewer than 4 words. The
// insertion occurs 1 byte before
// word 4 (otherwise it inserts
// in the middle of word 4).
if (Word4>0)

myString.insert(“Dark ”,Word4-1);
else

myString+=“ Dark”;
}

This program produces the following output:
Light Blue and Green are nice colors. But so are Red and Orange.
Light Yellow and Dark Green are colors. But so are Red and Pink.

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222
“Concatenate Strings” on page 224
“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Find Words or Substrings within Strings” on page 229

Chapter 6. Internationalization and Text 231

“Test the Characteristics of Strings”
“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Test the Characteristics of Strings
The IString class lets you test your strings to determine characteristics such as the
following:

v Whether they represent valid hexadecimal, decimal, or binary values

v Whether they contain only letters, letters and numbers, uppercase letters,
lowercase letters, or punctuation characters

v Whether they contain all SBCS or DBCS characters

This list covers only a few of the testing functions provided by IString.

The testing functions return a value of type bool, indicating either true or false for
the tested characteristic. For example, the function isBinaryDigits() returns false for
the IString value “1101121101”. All testing functions return a value of false for null
IString.

The testing functions all have names beginning with is..., because they ask a
question, such as “is the IString made up only of binary digits?” The following
example shows how you can use a subset of these functions:

// Evaluating strings using
// the IString is... methods

#include <istring.hpp>
#include <iostream>

void evaluate(IString& StringToTest)
{

if (StringToTest.isPrintable())
std::cout << “Evaluating the string ”

<< StringToTest << “:” << std::endl;
else

std::cout << “Evaluating an unprintable string:”
<< std::endl;

if (StringToTest.isDigits())
std::cout << “ Contains only digits 0-9.”

<< std::endl;
if (StringToTest.isAlphabetic())

std::cout << “ Contains only alphabetic”
<< “ characters.” << std::endl;

if (StringToTest.isAlphanumeric())
std::cout << “ Contains only alphabetic and”

<< “ numeric characters.” << std::endl;
if (StringToTest.isBinaryDigits())

std::cout << “ Contains only zeros and ones.”
<< std::endl;

if (StringToTest.isHexDigits())
std::cout << “ Contains only hex digits”

<< “ 0-9, a-f, A-F.”
<< std::endl;

if (StringToTest.isControl())
std::cout << “ Contains only control character values”

<< “ 00-1F, 7F.” << std::endl;
if (StringToTest.isLowerCase())

std::cout << “ Contains only lowercase”
<< “ letters a-z.” << std::endl;

if (StringToTest.isUpperCase())
std::cout << “ Contains only uppercase”

<< “ letters a-z.” << std::endl;

232 IOC Library User’s Guide

if (StringToTest.isSBCS())
std::cout << “ Contains only SBCS characters.”

<< std::endl;
}

int main(int argc, char *argv[])
{

IString Str[6];
Str[0]=“12345”; // numeric, hexadecimal
Str[1]=“abcde”; // alphabetic, hexadecimal
Str[2]=“10101”; // numeric, binary
Str[3]=“abCde”; // alphabetic, hexadecimal
Str[4]=“xyz12”; // alphanumeric, lowercase
Str[5]=“\x04\x06\x11\x12”; // control, unprintable

for (int i=1;i<6;i++) evaluate(Str[i]);
return 0;

}

The output from this program resembles the following. Depending on the code page
and character set (ASCII or EBCDIC) of the system you are running the program
on, the results may vary.
Evaluating the string abcde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only lowercase letters a-z.
Contains only SBCS characters.
Evaluating the string 10101:
Contains only digits 0-9.
Contains only alphabetic and numeric characters.
Contains only zeros and ones.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.
Evaluating the string abCde:
Contains only alphabetic characters.
Contains only alphabetic and numeric characters.
Contains only hex digits 0-9, a-f, A-F.
Contains only SBCS characters.
Evaluating the string xyz12:
Contains only alphabetic and numeric characters.
Contains only SBCS characters.
Evaluating an unprintable string:
Contains only control character values 00-1F, 7F.
Contains only SBCS characters.

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222
“Concatenate Strings” on page 224
“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Convert between Strings and Numeric Data” on page 234
“Convert between Strings and Different Base Notations” on page 235

Chapter 6. Internationalization and Text 233

Convert between Strings and Numeric Data
The IString class provides a number of as... functions that convert from IString
objects to numeric types. You can also convert from numeric types to IString objects
by using the versions of the IString constructor that take numeric values as
arguments. The following example shows various IString functions that convert
between strings and numbers:

// Conversion between IString and numeric values

#include <iostream>
#include <istring.hpp>

int main(int argc, char *argv[])
{

// Initialized with a float value
IString NumStr=1.4512356919E1;

// Convert to integer value
int Integer=NumStr.asInt();

// C++ conversion rules allow asDouble's
// result to be converted to float
float Float=NumStr.asDouble();

// Convert to double value
double Double=NumStr.asDouble();

// Assign another integer value
NumStr=688;

// Set precision of cout stream
std::cout.precision(20);
std::cout << “Integer: ” << Integer

<< “\nFloat: ” << Float
<< “\nDouble: ” << Double
<< “\nString: ” << NumStr
<< std::endl;

return 0;
}

This program produces the following output:
Integer: 14
Float: 14.512356758117676
Double: 14.512356919
String: 688

You can also change the base notation of IString objects containing integer
numbers, by using the d2b, d2x or d2c functions, which convert from decimal to
binary, hexadecimal, or character representations.

IText and Numeric Formatting
The IText class provides numeric formatting classes through IDecimalFormat,
IBinaryFormat, and IHexadecimalFormat.

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222
“Concatenate Strings” on page 224

234 IOC Library User’s Guide

“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232
“Convert between Strings and Different Base Notations”

Convert between Strings and Different Base Notations
You can use the format conversion functions to change the way the data in a string
is represented. These functions are overloaded so that each function has two
versions. The non-static version replaces the value of the string with the converted
value. The static version preserves the original string and returns a new string
object containing the converted value. For example:

// Changes value of aString
aString.c2b();

// Preserves value of aString
IString binaryDigits = IString::c2b(aString);

The conversion functions check the format of the source string to make sure it is
compatible with the source format implied by the function name. For example, if you
use the b2d function to convert a string from binary to decimal, the function first
checks that the string contains only the digits ’0’ and ’1’. If it contains any
characters other than those allowed by the source type, the format conversion
functions always return 0.

The following example shows the use of the conversion functions. If you examine
both the example and the output provided below, you can see how to use the
functions.

// IString conversion functions

#include <istring.hpp>
#include <iostream>

enum Bases {Bin, Dec, Hex, Char};
IString

Base[4]={“binary”, “decimal”, “hex”, “character”};
IString NumStr;

void Show(int From, int To, IString& Result)
{

std::cout << NumStr << “ in ” << Base[From]
<< “ is ” << Result << “ in ” << Base[To]
<< '.' << std::endl;

}

int main(int argc, char *argv[])
{

IString NewStr;
NumStr=“122”;

NewStr=IString::d2b(NumStr); Show(Dec,Bin,NewStr);
NewStr=IString::d2x(NumStr); Show(Dec,Hex,NewStr);
NewStr=IString::d2c(NumStr); Show(Dec,Char,NewStr);

NumStr=“Hat”;
NewStr=IString::c2b(NumStr); Show(Char,Bin,NewStr);
NewStr=IString::c2d(NumStr); Show(Char,Dec,NewStr);
NewStr=IString::c2x(NumStr); Show(Char,Hex,NewStr);

NumStr=“5F”;
NewStr=IString::x2b(NumStr); Show(Hex,Bin,NewStr);
NewStr=IString::x2d(NumStr); Show(Hex,Dec,NewStr);

Chapter 6. Internationalization and Text 235

NewStr=IString::x2c(NumStr); Show(Hex,Char,NewStr);
NumStr=“0110100001101001”;

NewStr=IString::b2d(NumStr); Show(Bin,Dec,NewStr);
NewStr=IString::b2x(NumStr); Show(Bin,Hex,NewStr);
NewStr=IString::b2c(NumStr); Show(Bin,Char,NewStr);

return 0;
}

The output from this program resembles the following. Depending on the code page
and character set (ASCII or EBCDIC) of the system you are running the program
on, the values may vary.
122 in decimal is 01111010 in binary.
122 in decimal is 7A in hex.
122 in decimal is z in character.
Hat in character is 010010000110000101110100 in binary.
Hat in character is 4743540 in decimal.
Hat in character is 486174 in hex.
5F in hex is 01011111 in binary.
5F in hex is 95 in decimal.
5F in hex is _ in character.
0110100001101001 in binary is 26729 in decimal.
0110100001101001 in binary is 6869 in hex.
0110100001101001 in binary is hi in character.

“Text Framework” on page 206

“Create Strings” on page 221
“Copy Strings” on page 222
“Concatenate Strings” on page 224
“Extend Strings” on page 225
“Format Strings” on page 225
“Determine String Lengths and Word Counts” on page 227
“Do String Input and Output” on page 227
“Find Words or Substrings within Strings” on page 229
“Replace, Insert, and Delete Substrings” on page 230
“Test the Characteristics of Strings” on page 232
“Convert between Strings and Numeric Data” on page 234

Styles

Styles and Style Sets
IText uses the classes ITextStyle and ITextStyleSet to encapsulate the styling
information associated with a string. ITextStyle is the abstract base class for all text
styles provided by the framework. ITextStyleSet provides a mechanism for
manipulating styles in groups. Most functions that take styles as parameters allow
you to add styles to a range of characters in an IText object either individually (with
ITextStyle) or as a group (with ITextStyleSet).

A style object is basically a wrapper for some value that gives the style meaning.
The type of value differs for each style. For example, a typeface style encapsulates
a string that indicates which typeface to use, such as Times or Helvetica, while the
italic style encapsulates a boolean that indicates whether the associated characters
are italicized or not. You can change the value of a style object at any time.

236 IOC Library User’s Guide

Styles can define information that controls how the text is displayed—for example,
the typeface or point size—or some other metadata not related to the display of the
text, such as the natural language of the text or whether it is editable. However,
styles do not define display mechanisms. It is up to the rendering mechanism to
interpret the information in the style objects and display the text according to the
associated styling information.

IText uses ITextStyleSet to store the set of styles associated with a particular style
run, and you can use it to work with groups of styles. An ITextStyleSet object can
contain only one instance of any given style. It cannot, for example, contain two
instances of ITextTypefaceStyle even if one style indicates “Helvetica” and another
indicates “Times.” If you add a style to a style set that already contains an instance
of that type of style, the new style replaces the old style regardless of their values,
as illustrated in this figure:

“Style Classes”
“Style Propagation” on page 239
“Character Data” on page 241

Style Classes
The framework currently supports two types of styles: character styles and
paragraph styles. These styles derive from the abstract classes ICharacterStyle and
IParagraphStyle, respectively, and are distinguished by how they propagate:

v Styles that propagate by character can be applied to any arbitrary range of
characters, and maintain their association with those characters regardless of
how the surrounding text changes. Character styles include point size and color.

v Styles that propagate by paragraph can be applied only to whole
paragraphs—ranges of characters delimited by paragraph separator characters.

Paragraph styles include justification and indentation. For example, if you apply a
paragraph style such as a justification style to a range of characters, IText
automatically applies it to the entire paragraph (or multiple paragraphs) containing
that range. Paragraph styles may be adjusted as text is edited, for example, if
paragraph separator characters are added or deleted.

When you create a style object, give it a meaningful value. For example, you might
give the value “12” to an ITextPointSizeStyle object or the value
IParagraphJustificationStyle::kCenter to an IParagraphJustificationStyle object. No
default values are provided—if you don’t specify a value when you create a style
object, the style’s value remains undefined.

Using an undefined style may be useful, for example, in situations where the value
is unimportant (such as calling IText::removeStyles) or where you create the style
object to pass it to another function that will fill in the value.

Chapter 6. Internationalization and Text 237

The style classes also provide the ITextStyleSet, which lets you group styles. For
example, you could add several styles to a range of characters with a single call to
IText. Any IText function that takes an ITextStyle parameter is overloaded to take an
ITextStyleSet parameter as well.

Character Style Classes
Character styles derive from ICharacterStyle. ICharacterStyle::propagates returns
the value ITextStyle::kPropagateByCharacter. You can apply these character styles
to any arbitrary range of characters, from a single character to all characters in an
IText object.

This table describes the concrete character styles currently provided by the
framework, along with the type of value each contains.

Class Description Value

ITextTypefaceStyle Specifies the typeface to use
to display characters.

An IText object encapsulating
the name of the typeface, for
example, “Helvetica.”

ITextPointSizeStyle Specifies the point size in
which to display characters.

A float representing the point
size, for example, “14.”

ITextBoldfaceStyle Specifies whether characters
are displayed in boldface, for
example, SampleString.

A bool-true means the
characters are displayed in
boldface.

ITextItalicStyle Specifies whether characters
are displayed in italics, for
example, SampleString.

A bool-true means the
characters are displayed in
italics.

ITextUnderlineStyle Specifies whether characters
are displayed underlined, for
example, SampleString.

A bool-true means the
characters are underlined.

ITextStrikethroughStyle Specifies whether characters
are displayed with a
strikethrough line.

A bool-true means the
characters are displayed with
a strikethrough line.

ITextOutlineStyle Specifies whether character
are displayed in an outline
typeface.

A bool-true means the
characters are outlined.

ITextUneditableStyle Specifies whether characters
can be edited. This is
currently the only style that is
not related to text display.

A bool-true means the
character cannot be edited.

ITextColorStyle Specifies a color to use to
display characters.

Three unsigned char values
representing the red, green,
and blue components of the
color.

ITextSuperSubscriptStyle Specifies a shift from the
baseline, in points, for
displaying characters as
superscripts or subscripts.

A float representing the
baseline shift. A negative
value creates a subscript. A
positive value create a
superscript.

Paragraph Style Classes
Paragraph styles derive from IParagraphStyle. IParagraphStyle::propagates returns
the value ITextStyle::kPropagateByParagraph. You can apply paragraph styles only
to whole paragraphs, that is, to ranges of characters delimited by
IUnicode::kParagraphSeparator characters.

238 IOC Library User’s Guide

If you apply paragraph styles to a range of characters that is less than a paragraph
or that intersects multiple paragraphs, IText propagates the paragraph styles to all
the relevant paragraphs. The styles also remain associated with the paragraph as
the number of characters in the paragraphs changes during editing.

This table describes the concrete paragraph styles currently provided by the
framework, along with the type of value each contains.

Class Description Value

IParagraphJustificationStyle Specifies the alignment of the
paragraph. Alignment is
specified relative to the
directionality of the writing
system. For example,
starting-edge-aligned means
on the left for left-to-right
languages such as English.

EJustification enum, defining
the possible values kStart,
kCenter, and kEnd.

IParagraphSpreadStyle Specifies whether no lines,
all lines, or all but the last
line of the paragraph are fully
justified.

ESpread enum, defining the
possible values kNone, kAll,
and kNotLastLine.

IParagraphStartIndentStyle Specifies an indent distance,
in points, for the starting
edge (the left edge in
left-to-right writing systems)
of the paragraph.

A float representing the
indent distance in points.

IParagraphEndIndentStyle Specifies an indent distance,
in points, for the ending edge
(the right edge in left-to-right
writing systems) of the
paragraph.

A float representing the
indent distance in points.

IParagraphFirstIndentStyle Specifies an indent distance,
in points, for the starting
edge of the first line of the
paragraph.

A float representing the
indent distance in points.

Currently the set of styles supported by the Unicode Text Framework is not
extensible; you cannot create your own subclasses of ITextStyle, ICharacterStyle, or
IParagraphStyle. Future Open Class releases may support extending this style
mechanism.

“Styles and Style Sets” on page 236
“Style Propagation”
“Character Data” on page 241

Style Propagation
The Unicode Text Framework uses the propagation of a style to determine how it
can be applied to character ranges and how the affected style runs change as the
characters are edited. The framework currently defines two types of style
propagation:

v Character-based propagation

v Paragraph-based propagation

Chapter 6. Internationalization and Text 239

Styles that propagate by character can be applied to any arbitrary range of at least
one character. The styles remain with these characters regardless of how
characters within that range or surrounding that range are edited. Styles applied to
a range of characters also propagate to any new text entered into that range.

For example, this shows a sequence of possible editing changes:

Styles that propagate by paragraph can be applied only to paragraphs—ranges of
characters delimited by paragraph-separator characters
(IUnicode::kParagraphSeparator). This makes the style propagation mechanism
more complicated than it is for character styles, because IText has to repropagate
paragraph styles when paragraph separator characters are added or deleted.

The mechanism for propagating styles follows these rules:

v A text string containing no paragraph-separator characters takes on the
paragraph styles of the text into which it is inserted.

v A text string bounded on both sides by paragraph-separator characters retains its
paragraph styles even when inserted into text containing other paragraph styles.

v A range of text that is inserted into another string and then deleted should have
the same paragraph separators and paragraph styles as it did before the editing
operations.

IText propagates paragraph styles backwards from the character closest to a
paragraph separator back to the beginning of the paragraph. For example, if you
have two text strings containing several paragraphs with different paragraph styles:

When propagating paragraph styles, IText recognizes only the
IUnicode::kParagraphSeparator character (U+2029) to be a paragraph-separator
character. When text in other character encoding systems is transcoded into
Unicode, you must ensure that it is processed by an ILineBreakConverter object so
that the separator characters are transcoded correctly.

240 IOC Library User’s Guide

“Styles and Style Sets” on page 236
“Style Classes” on page 237
“Character Data”

“Edit Character Data in an IText Object” on page 215

Character Data
IText provides several functions for accessing specific characters or character
ranges.

The framework provides a special class, ICharacterReference, that acts as a simple
proxy class to access single ioc::unichar_t values. IText uses ICharacterReference
wherever a non-const reference to an ioc::unichar_t is required.
ICharacterReference provides a safer character reference mechanism by:

v Filtering out-of-range character references that might cause memory problems

v Protecting the integrity of an IText object’s underlying storage mechanism, which
might be shared

v Protecting against style propagation problems

ICharacterReference provides an operator that returns a copy of the referenced
ioc::unichar_t values.

The following table describes the low-level IText functions for accessing characters:

Member function Description

operator[] and at Return a reference to or copy of the
character at a specified offset.

at_put Lets you set the character at a particular
offset to a specified character. The
ICharacterReference assignment operator
also supports this.

substr Provides an IText object containing a copy of
a specified range of characters.

Editing Character Data
IText provides functions for editing character data. You can specify the text to add to
the object as:

v Another IText object

v A ioc::unichar_t array (null-terminated or with a specified length)

v A range of an IText defined by a pair of iterators

v A range of an IText defined by an offset and a character count

Unless noted, text added to an IText retains its character styling information
(Unicode characters inserted into an IText are considered unstyled). Paragraph
styles are propagated as appropriate.

The following table describes the IText interfaces for editing character data:

Member function Description

operator+= and append Add a string to the end of the current text.

Chapter 6. Internationalization and Text 241

Member function Description

insert Inserts a string at a specified offset (you
specify the offset of the character after which
new text is to be inserted).

insert_and_propagate_styles Inserts a string at a specified offset. The
inserted string takes on the styles of the
surrounding text.

erase Deletes the characters in a specified range.

replace Replaces a range of characters with another
string. Unlike IString::change, the
IText::replace function is not able to perform
a full search and replace.

“Styles and Style Sets” on page 236
“Style Classes” on page 237
“Style Propagation” on page 239

Summary of Text Framework Classes
This table summarizes the Unicode Text Framework classes:

Class Description

ICharacterReference Provides a mechanism to reference
individual characters without introducing
errors in style propagation or reference
counting

ICharacterStyle Abstract base class for all character
styles-that is, styles that can be applied to
individual characters

IConstTextIterator A variation on ITextIterator that doesn’t allow
you to modify the characters

IFastTextIterator A text iterator that provides faster
performance but fewer safety guarantees
than ITextIterator

IParagraphEndIndentStyle Paragraph style specifying the indent
distance for the “end” side of the paragraph,
for example, the right side of left-to-right text

IParagraphFirstIndentStyle Paragraph style specifying the indent
distance for the start of the first line of the
paragraph

IParagraphJustificationStyle Paragraph style specifying which margin(s)
to align the lines of the paragraph to

IParagraphSpreadStyle Paragraph style specifying which lines of a
range of paragraphs are aligned to both
margins

IParagraphStartIndentStyle Paragraph style specifying the indent
distance for the “start” side of the paragraph,
for example, the left side of left-to-right text

242 IOC Library User’s Guide

Class Description

IParagraphStyle Abstract base class for all paragraph
styles-that is, styles that can only be applied
to paragraphs and not to individual
characters

IReverseConstTextIterator A variation on IReverseTextIterator that
doesn’t allow you to modify the characters

IReverseTextIterator Lets you iterate backwards through the
character in an IText object

IText Encapsulates styled strings of Unicode
characters

ITextBoldfaceStyle Character style specifying whether
characters are boldface

ITextColorStyle Character style specifying the color of
characters

ITextItalicStyle Character style specifying whether
characters are italicized

ITextIterator Lets you iterate through the characters in an
IText object

ITextOutlineStyle Character style specifying whether
characters are outlined

ITextPointSizeStyle Character style specifying the point size of
characters

ITextStrikethroughStyle Character style specifying whether
characters have a strikethrough

ITextStyle Abstract base class for both character and
paragraph styles

ITextStyleRunIterator Lets you iterate through style runs (ranges of
text with the same styling information) in an
IText object

ITextStyleSet Class for manipulating a group of styles as a
single set

ITextSuperSubscriptStyle Character style specifying the amount of
baseline shift of characters, for creating
superscripts and subscripts

ITextTypefaceStyle Character style specifying the typeface or
font of characters

ITextUnderlineStyle Character style specifying whether
characters are underlined

ITextUneditableStyle Character style specifying whether
characters can be modified

“Text Framework” on page 206
“Text Creation and Manipulation” on page 207
“Text Boundaries” on page 207
“Text Storage” on page 208
“Strings and Buffers” on page 210
“String Formats” on page 213
“Text and Style Run Iteration” on page 217

Chapter 6. Internationalization and Text 243

The Unicode Standard
The Unicode Standard is a standardized character code designed to encode
international texts for display and storage. It uses a unique 16-bit value to represent
each individual character. The Unicode standard includes the following:

v Alphabets used in Europe, Africa, and Asia

v Standard characters from China, Japan, Korea, and Taiwan

v Mathematical operators

v Technical symbols

The following diagram illustrates how Unicode assigns a unique 16-bit value to each
character:

0xAFB3 represents the character in BIG5 and the characters in
Shift-JIS. Unicode assigns each character with a unique code point. In this case

is assigned with 0x9673 and with 0xFF73 and 0xFF6F.

Although the 16-bit architecture of Unicode can handle more than 65,000 different
characters, the Unicode Standard can extend to handle an additional one million
characters by the surrogate extension mechanism. This mechanism uses two 16-bit
values to represent one character. The Unicode Standard has not used any of
these surrogates. (The current standard contains 38,885 characters.)

The Unicode Standard lets you dynamically compose accented characters. In the
Unicode Standard, a character and an accent are separate characters. In other
character encodings such as ASCII, you select from a set of accented characters.

The standard supports bidirectional ordering of languages. Bidirectional language
ordering occurs when a script uses two or more languages with different dominant
directions. For example, a script would have bidirectional language ordering if it
mixes Arabic (which reads from right-to-left) with Greek (which reads from
left-to-right). The Unicode Standard includes characters that specify a change of
direction.

The current implementation of the IBM Open Class Unicode Text framework
supports the Unicode Standard without the surrogate extension mechanism.

244 IOC Library User’s Guide

Unicode Encoding Schemes
The ISO/IEC 10646 (International Organization for Standardization/International
Electrotechnical Commission) defines two alternative forms of encoding:

Encoding Description

UCS-4 The Universal Character Set coded in 4
bytes is a 31-bit encoding used to represent
each individual character. These coding
positions are conceptually divided in 120
groups of 256 planes, each plane containing
256 rows and 256 columns.

UCS-2 The Universal Character Set coded in 2
bytes is a 16-bit encoding consisting of plane
zero, the Basic Multilingual Plane (BMP).
The Unicode Standard includes all character
code values of UCS-2 as well as additional
characters.

Transformation Formats
A transformation format is used to transform a coding to another coding with a more
restrictive numerical range. For example, Unicode consists of characters that have
16 bits, while ASCII characters only have 7 bits. A transformation format would
typically transform a Unicode character to one or more bytes so that a system using
ASCII characters may understand the Unicode data.

Format Description

UTF-8 The UCS Transformation Format, 8-bit form
is a file system safe multi-byte encoding
scheme for UCS-2. It is a proper superset of
ASCII and it preserves the semantics of a
null octet for the C programming language.
UTF-8 is mostly used for AIX’s file system.

UTF-16 The UCS Transformation Format for Planes
of Group 00. UTF-16 is the ISO/IEC
encoding that is equivalent to the Unicode
Standard with the use of surrogates.

Both AIX and NT use UCS-2 as their process codes. Win95/98 is still mostly ASCII
based. The AIX platform prefers UTF-8 based functions.

The current implementation of IBM Open Class Unicode Text framework supports
both UCS-2 (UTF-16 without the support for surrogates) and UTF-8 encodings for a
number of reasons, such as performance, practical interest, and memory burden.

Unicode Character Types
Two data types exist for multilingual characters:

Data type Description

unsigned short Data type
customarily used for Unicode characters.

Chapter 6. Internationalization and Text 245

Data type Description

wchar_t Data type used for extended DBCS (double
byte character string).

IOC::unichar_t is defined to wchar_t.

z/OS has two modes of operation.
The data type wchar_t is Unicode in ASCII
mode and wide-EBCDIC in EBCDIC mode.

The IBM Open Class has defined two data types to explicitly represent Unicode as
an unsigned short:

Unicode Character Type Description

ioc::UniChar An unsigned short.

The value is an unsigned short or
unsigned int depending on the operating
system level and whether the application is
32-bit or 64-bit.

See header file ilanglvl.hpp for more details
on ioc::UniChar.

ioc::unichar_t This data type
allow you to switch from unsigned short to
wchar_t on systems where wchar_t is two
bytes long and supports Unicode. By default
this type is defined as an unsigned short. If
you define the macro __IOC_USE_WCHAR,
ioc::unichar_t becomes a wchar_t.

ioc::unichar_t is defined to wchar_t.

ioc::unichar_t is defined as
unsigned short.

“Unicode Support and the IUnicode Class” on page 247
“Character Values” on page 249
“Character Properties” on page 252
“Summary of Unicode Support Classes” on page 254

“Create a Unicode Application”
“Identify a Character’s Properties” on page 252
“Identify a Character’s Script” on page 253
“Find Characters with Specific Properties” on page 253

Create a Unicode Application
Unicode Enabled Applications
A Unicode enabled IBM Open Class application is one that uses the Unicode
interfaces from IBM Open Class. Unicode interfaces are those that either takes an
IText object (or reference) or an array of ioc::unichar_t data.

246 IOC Library User’s Guide

You can mix Unicode and non-Unicode code (in other words, use both IText and
IString). However, you may not be able to represent some Unicode (UCS-2) data as
ASCII or MBCS data. As a result, you may lose data when converting between
encoding schemes.

The IBM Open class provides two string classes: IText and IString. The following
chart lists factors that determine which string class you should use:

Factor Yes No

Do you want ISO
basic_string protocol?

Use IText. Use either IString or IText.

Are you going to store and
manipulate large string
objects?

Use IText. Use either IString or IText.

Do you want to associate
styles with your strings (like
bold, italic, or color
information)?

Use IText. Use either IString or IText.

Do you need parsing
capabilities?

Use IString. Use either IString or IText.

Unicode Samples
z/OS C/C++ feature provides you with the following sample to help you create
Unicode applications:

Name Location Description

Unicode Transcoding Sample

/usr/lpp/ioclib/sample/intl/transcod

/samples/ioc/intl/transcod

Converts string data between one
code page and Unicode

“The Unicode Standard” on page 244
“Unicode Support and the IUnicode Class”
“Character Values” on page 249
“Character Properties” on page 252
“Summary of Unicode Support Classes” on page 254

“Identify a Character’s Properties” on page 252
“Identify a Character’s Script” on page 253
“Find Characters with Specific Properties” on page 253

Unicode Support and the IUnicode Class
Overview of Unicode Support
Many Open Class classes use the Unicode character encoding standard to
represent text data internally. Unicode, a fixed-width, 16-bit character encoding
system, contains codes for every character in every major world script, along with a
wide set of symbols, punctuation, and control characters. Because the Unicode
system can store and access every character, regardless of its script or natural
language, it lets you manipulate text more easily than in environments that require
multiple code pages to support different character sets.

Chapter 6. Internationalization and Text 247

The Unicode support classes let you query the properties associated with individual
Unicode character values. These properties, provided implicitly by the Unicode
character encoding standard, include:

v information about the script (for example, Latin or Cyrillic)

v information about the character’s character set (for example, symbols or control
characters)

v semantic information, such as whether a character is a digit or is uppercase,
lowercase, or uncased.

The IUnicode Class
The primary class in the Unicode support classes is IUnicode, which lets you
determine a character’s script and character properties. The Unicode support
classes also provide a mechanism for referencing specific Unicode character values
by name instead of by codepoint values.

IUnicode provides a set of static functions that check a Unicode character,
represented by the datatype ioc::unichar_t, for a specific property—for example,
querying whether a character is an uppercase character, a digit, or one of the space
characters. These functions let you check a character for a specific property without
requiring you to know all the possibilities. You can test for a space character, for
example, with the IUnicode::IsASpace function without needing to know the full set
of Unicode characters used to represent a space.

The class library also provides a set of classes that contain enumerated names for
each Unicode character value. These classes correspond to groups of characters
based on script or functions: ULatin, UGreek, UDingbats, UMathematicalOperators,
and so on. Use the names enumerated in these classes to reference specific
Unicode character values.

Character Support
The Unicode character set provides full character coverage for the major scripts
listed below, as well as for punctuation, symbols, and control characters. The
character set for each script is independent—even if a character appears in multiple
scripts, it has a separate code within each script. For example, the character A has
one code for the Roman alphabet, another code for the Greek alphabet, and yet
another code for the Cyrillic alphabet. However, because more than one language
may use a given alphabet, the character A is represented by the same code for
English, French, and, in fact, all languages that use the Roman alphabet.

Supported Scripts

v Arabic

v Armenian

v Bengali

v Cyrillic

v Devanagari

v Georgian

v Greek

v Gujarati

v Gurmukhi

v Han

v Hangul

v Hebrew

248 IOC Library User’s Guide

v Kana

v Kannada

v Lao

v Malayam

v Oriya

v Roman

v Tamil

v Telugu

v Thai

v Zhuyinfuhao

Reserved Areas
The Unicode standard sets aside a range of characters, from U+E000 to U+F8FF,
for the following private uses:

v special characters or sets of characters not included in the Unicode set

v assigning specific semantics to a character

By convention, this area is divided into an end-user zone, which begins at U+E000
and ascends toward higher numbers, and a corporate use zone, which begins at
U+F8FF and descends toward lower numbers. The purpose of this convention is to
minimize conflicting assignments within the private use area.

“The Unicode Standard” on page 244
“Character Values”
“Character Properties” on page 252
“Summary of Unicode Support Classes” on page 254

“Create a Unicode Application” on page 246
“Identify a Character’s Properties” on page 252
“Identify a Character’s Script” on page 253
“Find Characters with Specific Properties” on page 253

Character Values
The class library provides a name, through a set of enumerations, for every
character in the Unicode set, with the exception of most of the Han ideographic
characters. Names are provided for some particularly significant ideographs, such
as digits and the 214 KangXi radicals.

Chapter 6. Internationalization and Text 249

To refer to specific Unicode values, use character names rather than code points.
For example, refer to UGeneralPunctuation::kQuestionMark rather than the value
U+003F.

Because of the large number of characters, the names are scoped into a set of
classes based on script or function. These classes are provided only for referencing
the enumerated names they contain; do not use them for any other reason. These
classes are listed in the following table. See the enumeration in the referenced
header file for specific character names.

Category Header file Classes

General utility characters iugnrl.hpp UASCII
UCombining
UControlCode
UGeneralPunctuation
ULatin
ULatin1
UModifierLetter
UUnicodeDigit
UUnicodeSpecial
UWhiteSpace

East Asian scripts iueasia.hpp UBopomofo
UCJKRadical
UHangul
UHangulChoseong
UHangulJongseong
UHangulJungseong
UHangulLetter
UHangzhouNumeral
UHanNumeral
UHiragana
UIdeographicAnnotation
UKangXiRadical
UKatakana
UKatakanaHiragana

South and Southeast Asian
scripts

iusasia.hpp UBengali
UDevanagari
UGujarati
UGurmukhi
UKannada
ULao
UMalayalam
UOriya
UTamil
UTelugu
UThai

Eastern European scripts iueeuro.hpp UCoptic
UCyrillic
UGeorgian
UGreek

Mideastern scripts iumeast.hpp UArabic
UArmenian
UHebrew
USyriac

250 IOC Library User’s Guide

Category Header file Classes

Characters provided for
compatibility with other
standards

iucmpbty.hpp UArabicCompatibility
UArabicLigature
UArmenianSmallLigature
UBlocks
UBoxDrawings
UCircledDigit
UCircledHangul
UCircledIdeograph
UCircledKatakana
UCircledLatin
UCircledNumber
UCJKCompatibility
UCJKSquaredAbbreviations
UCJKSquaredWords
UCNSCompatibility
UFullStopDigit
UFullStopNumber
UFullwidth
UHalfwidth
UHalfwidthHangulLetter
UHangulSyllable
UIdeographicTelegraph
ULatinSmallLigature
UParenthesizedDigit
UParenthesizedHangul
UParenthesizedIdeograph
UParenthesizedLatin
UParenthesizedNumber
UPresentationFormForVertical
URomanNumeral
USmallVariants
USubscript
USuperscript
UVulgarFraction

Symbols iusyms.hpp UAPLFunctionalSymbol
UArrow
UCJKSymbols
UControlCodePicture
UCurrency
UDingbats
UGeometricShapes
UHarpoon
ULetterLikeSymbol
UMathematicalOperators
UMiscellaneousTechnical
UOCR
UStandardPhonetic
UZapfDingbats

Some character names may refer to characters of types other than ioc::unichar_t. In
such cases, you may need to cast characters before using interfaces that take
ioc::unichar_t parameters.

“The Unicode Standard” on page 244
“Unicode Support and the IUnicode Class” on page 247

Chapter 6. Internationalization and Text 251

“Character Properties”
“Summary of Unicode Support Classes” on page 254

“Create a Unicode Application” on page 246
“Identify a Character’s Properties”
“Identify a Character’s Script” on page 253
“Find Characters with Specific Properties” on page 253

Character Properties
IUnicode provides static member functions that let you access the semantic
information provided by the Unicode character standard. These functions let you
determine the script of an ioc::unichar_t character or query whether that character
has a particular property.

IUnicode includes an enum, EUnicodeScript, that defines the set of scripts
supported by Unicode. The function script returns the correct enumerated value that
indicates the script of the character. Other functions return a boolean value that
indicates whether the character has a particular property.

ICharacterPropertyIterator lets you scan the set of Unicode characters for
characters that have a specific set of properties. For example, you might use this
class to return a list of punctuation characters for a particular script. The iterator
takes a range of character properties, defined by the IUnicode enum
ECharacterProperty, and identifies the characters that have the properties in that
range.

“The Unicode Standard” on page 244
“Unicode Support and the IUnicode Class” on page 247
“Character Values” on page 249
“Summary of Unicode Support Classes” on page 254

“Create a Unicode Application” on page 246
“Identify a Character’s Properties”
“Identify a Character’s Script” on page 253
“Find Characters with Specific Properties” on page 253

Identify a Character’s Properties
Use the corresponding IUnicode static member function to determine whether a
character has a particular property. For example, this code shows how to iterate
through a text object, replacing space characters with hyphens:

for (iter = someText.begin();
iter < someText.end() && IUnicode::isASpace(*iter);

++iter)
someText.replace(someText.begin(), iter,

UGeneralPunctuation::kHyphen);

“Changes in Version 5 of the IBM Open Class Library” on page 6
“Character Properties”

252 IOC Library User’s Guide

“Create a Unicode Application” on page 246
“Identify a Character’s Script”
“Find Characters with Specific Properties”

Identify a Character’s Script
Use the IUnicode::script function to determine the script of a character. Scripts are
identified by the IUnicode::EScript enumeration. For example, this code shows how
to determine whether a character at a specified offset in a text object is from the
Roman script:

ioc::unichar_t c = someText.at(0);
if (IUnicode::script(c) == IUnicode::kRoman)
{

// Character is of the Roman script...
}

“The Unicode Standard” on page 244
“Unicode Support and the IUnicode Class” on page 247

“Create a Unicode Application” on page 246
“Identify a Character’s Properties” on page 252
“Find Characters with Specific Properties”

Find Characters with Specific Properties
Use the class ICharacterPropertyIterator to find the set of Unicode characters with
particular properties. This iterator identifies the set of characters with a specified
range of properties, based on the IUnicode::ECharacterProperty enum.

1. Create an ICharacterPropertyIterator, specifying the range of properties to
identify.

2. Use operator++ to advance the iterator.

3. Use operator* to access the character currently referenced by the iterator.

4. Use a WHILE statement to iterate the evaluation until the end of the character
set.

For example, this code shows how to iterate through the Unicode character set and
build a list of cased letters (characters with either a lowercase or an uppercase
property):

ioc::unichar_t longList[65536];
int n = 0;
// Create the iterator
ICharacterPropertyIterator iter(IUnicode::kUpperCaseLetter,

IUnicode::kLowerCaseLetter);
while(iter)
{
// Access the next character with case properties
longList[n] = iter*;
// Advance the iterator
iter++;
n++;
}

“Changes in Version 5 of the IBM Open Class Library” on page 6
“Character Properties” on page 252

Chapter 6. Internationalization and Text 253

“Create a Unicode Application” on page 246
“Identify a Character’s Properties” on page 252
“Identify a Character’s Script” on page 253

Summary of Unicode Support Classes
This table lists the Unicode support classes:

Class Description

ICharacterPropertyIterator Lets you identify the set of Unicode
characters with specific character properties

IUnicode Provides access to the script and character
properties associated with a Unicode
character

UAPLFunctionalSymbol Enumerates names for APL functional
symbols in Unicode

UArabic Enumerates names for characters in the
Arabic script, excluding ligatures and
compatibility variants

UArabicCompatibility Enumerates names for characters required
for compatibility with older Arabic character
sets

UArabicLigature Enumerates names for Arabic ligatures

UArmenian Enumerates names for characters in the
Armenian script, excluding ligatures

UArmenianSmallLigature Enumerates names for ligatures of lowercase
Armenian letters

UArrow Enumerates names for arrow symbols in
Unicode

UASCII Enumerates names for Unicode characters
from the ASCII character set

UBengali Enumerates names for characters in the
Bengali script

UBlocks Enumerates names for Unicode characters
used in some terminal applications to draw
blocks and filled-in shapes on the screen

UBopomofo Enumerates names for characters in the
Bopomofo (or Zhuyinfuhao) alphabet used to
write Chinese phonetically

UBoxDrawings Enumerates names for characters used to
draw boxes on the screen

UCircledDigit Enumerates names for digits inside circles

UCircledHangul Enumerates names for Hangul (Korean)
characters inside circles

UCircledIdeograph Enumerates names for East Asian
ideographs inside circles

UCircledKatakana Enumerates names for Katakana characters
inside circles

UCircledLatin Enumerates names for Latin characters
inside circles

254 IOC Library User’s Guide

Class Description

UCircledNumber Enumerates names for numbers inside
circles

UCJKCompatibility Enumerates names for East Asian
ideographs required for compatibility with
existing national and industrial standards

UCJKRadical Enumerates names for the set of variant
forms of the traditional 214 radicals (as found
in the KangXi dictionary), when they occur as
parts of characters or are used for simplified
Chinese.

UCJKSquaredAbbreviations Enumerates names for Latin abbreviations
written in square blocks in Japanese

UCJKSquaredWords Enumerates names for Japanese words or
phrases written in square blocks

UCJKSymbols Enumerates names for symbols used in the
writing of East Asian languages or from East
Asian character sets

UCNSCompatibility Enumerates names for characters required
for compatibility with CNS 11643-1986

UCombining Enumerates names for certain combining
characters used in Unicode

UControlCode Enumerates names for control codes defined
in Unicode

UControlCodePicture Enumerates names for graphic symbols used
to represent standard control codes when
discussing them (as opposed to executing
them)

UCoptic Enumerates names for characters in the
Coptic script

UCurrency Enumerates names for currency symbols

UCyrillic Enumerates names for characters in the
Cyrillic script

UDevanagari Enumerates names for characters in the
Devanagari script

UDingbats Enumerates names for miscellaneous
dingbat symbols encoded in Unicode

UFullStopDigit Enumerates names for digits followed by
periods

UFullStopNumber Enumerates names for numbers followed by
periods

UFullwidth Enumerates names for extra-wide copies of
certain Unicode characters

UGeneralPunctuation Enumerates names for punctuation
characters within Unicode, such as spaces,
dashes, and so on

UGeometricShapes Enumerates names for Unicode characters
providing prototypes for various geometric
shapes

UGeorgian Enumerates names for characters in the
Georgian script

Chapter 6. Internationalization and Text 255

Class Description

UGreek Enumerates names for characters in the
Greek script

UGujarati Enumerates names for characters in the
Gujarati script

UGurmukhi Enumerates names for characters in the
Gurmukhi script

UHalfwidth Enumerates names for extra-narrow copies
of certain Unicode characters

UHalfwidthHangulLetter Enumerates names for half-width Hangul
letters

UHangul Enumerates names for characters in the
Hangul script

UHangulChoseong Enumerates names for initial conjoining
Korean letters (jamos)

UHangulJongseong Enumerates names for final consonant
conjoining Korean letters (jamos)

UHangulJungseong Enumerates names for medial vowel
conjoining Korean letters (jamos)

UHangulLetter Enumerates names for non-conjoining forms
of Korean letters (jamos)

UHangulSyllable Enumerates names for precomposed Hangul
syllables

UHangzhouNumeral Enumerates names for Hangzhou-style
numerals used in East Asia

UHanNumeral Enumerates names for East Asian
ideographs used to write numerals

UHarpoon Enumerates names for harpoon-like symbols
within Unicode

UHebrew Enumerates names for characters in the
Hebrew script

UHiragana Enumerates names for the Hiragana
syllabary used in writing Japanese

UIdeographicAnnotation Enumerates names for Kanbun marks used
in Japanese to indicate the Japanese
reading order of classical Chinese texts

UIdeographicTelegraph Enumerates names for East Asian symbols
from telegraph codes

UKangXiRadical Enumerates names for the traditional 214
radicals used to classify and order East
Asian ideographs, as found in the KangXi
dictionary

UKannada Enumerates names for characters in the
Kannada script

UKatakana Enumerates names for the Katakana
syllabary used in writing Japanese

UKatakanaHiragana Enumerates names for voicing marks used in
both the Hiragana and Katakana syllabaries

ULao Enumerates names for characters in the Lao
script

256 IOC Library User’s Guide

Class Description

ULatin Enumerates names for characters in the
Latin script

ULatin1 Enumerates names for Unicode characters
from the ISO 8859-1 (Latin 1) character set

ULatinSmallLigature Enumerates names for ligatures of lowercase
Latin letters

ULetterLikeSymbol Enumerates names for symbols, such as
some mathematical constants, derived from
ordinary letters from the Latin, Greek, or
Hebrew scripts

UMalayalam Enumerates names for characters in the
Malayalam script

UMathematicalOperators Enumerates names for symbols used in
writing mathematics

UMiscellaneousTechnical Enumerates names for miscellaneous
technical symbols, such as keyboard
symbols and crop marks

UModifierLetter Enumerates names for modifier letters, such
as most accents, used within Unicode

UOCR Enumerates names for Unicode characters
used in OCR systems such as check
processing

UOriya Enumerates names for characters in the
Oriya script

UParenthesizedDigit Enumerates names for digits inside
parentheses

UParenthesizedHangul Enumerates names for Hangul (Korean)
characters inside parentheses

UParenthesizedIdeograph Enumerates names for East Asian
ideographs inside parentheses

UParenthesizedLatin Enumerates names for Latin characters
inside parentheses

UParenthesizedNumber Enumerates names for numbers inside
parentheses

UPresentationFormForVertical Enumerates names for variants of Unicode
characters used in writing text vertically

URomanNumeral Enumerates names for Roman numeral
characters

USmallVariants Enumerates names for extra-small versions
of certain Unicode characters

UStandardPhonetic Enumerates names for Unicode characters
used in the International Phonetic Alphabet

USubscript Enumerates names for subscripted digits and
letters

USuperscript Enumerates names for superscripted digits
and letters

USyriac Enumerates names for characters in the
Syriac script

Chapter 6. Internationalization and Text 257

Class Description

UTamil Enumerates names for characters in the
Tamil script

UTelugu Enumerates names for characters in the
Telugu script

UThai Enumerates names for characters in the Thai
script

UUnicodeDigit Enumerates names for Unicode characters
used to write decimal numerals

UUnicodeSpecial Enumerates names for special characters
within Unicode, such as the byte order mark,
null character, invalid character, and so on

UVulgarFraction Enumerates names for fraction characters,
such as 1/2

UWhiteSpace Enumerates ″whitespace″ characters like line
separator, tab and form feed.

UZapfDingbats Enumerates names for the Zapf dingbat set

“Unicode Support and the IUnicode Class” on page 247
“Character Values” on page 249
“Character Properties” on page 252

“Create a Unicode Application” on page 246
“Identify a Character’s Properties” on page 252
“Identify a Character’s Script” on page 253
“Find Characters with Specific Properties” on page 253

258 IOC Library User’s Guide

Chapter 7. Error Handling, Tracing, and Testing

Exceptions in the IBM Open Class
Exceptions provide a mechanism for dealing with unusual circumstances in
programs. Each exception object contains the following:

v Exception message text strings which describe the exception in detail.

v An error ID that lets you uniquely identify what error caused the exception.

v A severity code that lets you determine whether or not you can recover the
exception.

v Information about where the exception was thrown.

Use the member functions of the exception classes to do the following:

v Add information about where the exception was thrown.

v Set, modify, and retrieve the exception text in the object.

v Get the error ID of the exception.

v Determine if the exception is recoverable.

v Log the exception data.

v Set the error ID of the exception.

v Set the severity of the exception.

v Set a trace function.

Using Exceptions
There are three primary ways to use the exception classes:

1. Catch exceptions that the IBM Open Class throws. Certain functions in the IBM
Open Class throw exceptions that are derived from the IException class. If you
are familiar with the characteristics of the exception classes, you can take
advantage of this knowledge to make code that uses the IBM Open Class more
robust.

2. Throw and catch your own exceptions. The exception classes provide a
convenient way to package information about an exception.

3. Derive your own exception classes.

Open Class Error and Exception Output
Although Open Class is designed to catch as many errors as possible during the
compilation and link steps, some errors can only be detected at run time. The
classes in Open Class throw C++ exceptions to indicate runtime errors. Errors
messages describing the exception can be seen while debugging, or can be seen in
trace output sent to STDOUT, STDERR, or a queue; trace output is only seen if you
have turned tracing on. Your own classes can also throw C++ exceptions and
output trace information in the same way, by using classes provided in Open Class.

The Exceptions Message File
You can find IBM Open Class-provided exceptions in the following files:

v cppaoi40.msg

v ibmvaccl.cat

v ICLEMSGT

v QYPPMSGF

© Copyright IBM Corp. 1996, 2001 259

You must provide this file as part of you application’s runtime in order to resolve
exception text.

You must rename the exception file if you ship your product on an
Intel platform. To identify the new name, call IMessageText::setMessageFile(). See
the topic Package and Distribute an IBM Open Class Application for more
information.

“Use Throw Macros” on page 261
“General Exceptions”
“Use Assertion Macros” on page 263
“Use try and catch” on page 264
“Rethrow Exceptions” on page 266
“Derive Your Own Exceptions” on page 268
“Use Trace Macros” on page 269

General Exceptions
The IException class is the base exception class. When you want to signal that
your code has encountered an unusual situation, you should throw whichever
subclass of IException best conveys the nature of the situation. You can convey the
nature of most unusual situations using one of the exceptions described in this
section.

The following table lists some of the exception classes that are derived from
IException and the situations in which they are typically thrown.

Exception Class Thrown When...

IAccessError A logical error occurs, such as “resource not
found.”

IAlreadyExists Requested object could not be created
because an object with the same name or
location already exists.

IAssertionFailure The expression in an IASSERT macro
evaluates to false.

ICannotProceed An operation could not be completed, but it
may be possible to continue the operation or
recover in some other fashion.

IConditionInvalid An operation is attempted on an ICondition
object that is in an invalid state.

IDecimalDataError An IBinaryCodedDecimal or IDecimalUtil
object encounters an underflow or overflow
condition.

IDeviceError A hardware-related error occurs.

IGraphicException An exception occurs in 2D graphic code.

IInvalidName Used an invalid name for an object (for
example a file or network resource).

IInvalidParameter An invalid parameter is passed; the
expression in an IASSERTPARM macro
evaluates to false.

260 IOC Library User’s Guide

Exception Class Thrown When...

IInvalidRequest An object is in the wrong state for a function;
the expression in an IASSERTSTATE macro
evaluates to false.

IMustBeEmpty An operation on a container failed because
the container was not empty.

IObjectNotFound An operation failed because it was unable to
locate the requested object.

IOutOfMemory Memory is exhausted.

IOutOfSystemResource System resource is exhausted.

IResourceExhausted A resource is exhausted or currently
unavailable.

IWaitAbandoned A host abandons a wait before timing out

The following classes are used in conjunction with the IException class and its
derived classes:

Class Description

IException::TraceFn A support class for the IException class.

IExceptionLocation A support class for the IException class. The
IEXCEPTION_LOCATION macro expands to
create an instance of the IExceptionLocation
class.

“Exceptions in the IBM Open Class” on page 259
“File System Exceptions” on page 163
“Exceptions Defined by the Streaming Classes” on page 91
“Collection Class Library Exceptions” on page 356

“Use Throw Macros”
“Use Assertion Macros” on page 263

Signal Exceptions

Use Throw Macros: When your code encounters an exceptional situation, you
should identify which subclass of IException best conveys the nature of the situation
and then throw that exception using an appropriate throw macro. There are nine
throw macros:

Macro Type of Exception Thrown

ITHROW Any IBM Open Class exception. (See IException)

ITHROWCLIBERROR Exceptions constructed with ICLibErrorInfo information.

ITHROWERROR Any IBM Open Class exception. (See IBaseErrorInfo.)

ITHROWERROR1 Any IBM Open Class exception. (See IBaseErrorInfo.)

ITHROWLIBRARYERROR Any IBM Open Class exception. (see IBaseErrorInfo)

ITHROWLIBRARYERROR1 Any IBM Open Class exception. (see IBaseErrorInfo)

ITHROWMMERROR2 Exceptions constructed with IMMErrorInfo information.

ITHROWSYSTEMERROR Exceptions constructed with ISystemErrorInfo information.

Chapter 7. Error Handling, Tracing, and Testing 261

The INO_EXCEPTIONS_SUPPORT macro is provided in support of compilers that
lack an exception handling implementation. If it is defined, the ITHROW macro ends
the program after capturing the location information and logging it, instead of
throwing an exception. This macro may not work correctly on all compilers.

The following macros end the program if you have defined
INO_EXCEPTIONS_SUPPORT:

v ITHROW

v ITHROWERROR

v ITHROWERROR1

v ITHROWLIBRARYERROR

v ITHROWLIBRARYERROR1

v ITHROWSYSTEMERROR

See IException for more information about the INO_EXCEPTIONS_SUPPORT
macro.

The following example demonstrates the use of the ITHROW macro. The program
attempts to output the first character of the file source.dat. If the program cannot
locate the file, it throws an IAccessError object. The catch block then generates the
error message “Cannot locate file.”

// Use the ITHROW macro
#include <iostream.h>
#include <fstream.h>
#include <iexcbase.hpp>

void openFile(fstream& fs, char *filename)
{

fs.open(filename, ios::in);
}

char getFirstChar(fstream& fs)
{

char c;
if (fs.get(c) == 0)
{

ITHROW(IAccessError(“Cannot locate file.”));
}
return c;

}

int main(int argc, char *argv[])
{

char c;
char *filename = “source.dat”;
fstream fs;
openFile(fs, filename);
try
{

c = getFirstChar(fs);
cout << “Here is first character: ”

<< c << endl;
}
catch(IAccessError ie)
{

cout << ie.text() << endl;
}
return 0;

}

262 IOC Library User’s Guide

“Exceptions in the IBM Open Class” on page 259

“General Exceptions” on page 260
“Use Assertion Macros”

Use Assertion Macros: The assertion macros provide a convenient mechanism
for testing if a given expression is true and, if it is not true, automatically throwing
an exception. When you use an assertion macro, you pass as input an expression
that you anticipate to be true.

There are three assertion macros:

Assertion Macro Description

IASSERT This macro tests the expression you provide
and, if it is false, throws the IAssertionFailure
exception.

IASSERTSTATE This macro tests the expression you provide
and, if it is false, invokes the
IExcept__assertState function. The
IExcept__assertState function creates an
IInvalidRequest exception. The macro adds
location information, logs, and throws the
exception.

IASSERTPARM This macro tests the expression you provide
and, if it is false, invokes the
IExcept__assertParameter function. The
IExcept__assertParameter function creates
an IInvalidParameter exception. The macro
adds location information, logs, and throws
the exception.

Consider the following simple example of using the IASSERTSTATE macro. The
getFirstChar function contains the IASSERTSTATE macro and passes a call to the
get function to the macro. If the get call fails, it returns zero and the
IASSERTSTATE macro throws an IInvalidRequest exception.

// Using the IASSERTSTATE macro

#include <iostream.h>
#include <fstream.h>
#include <iexcbase.hpp>

void openFile(fstream& fs, char *filename)
{

fs.open(filename, ios::in);
}

char getFirstChar(fstream& fs)
{

char c;
IASSERTSTATE(fs.get(c));
return c;

}

int main(int argc, char *argv[])
{

char c;
char * filename = “source.dat”;
fstream fs;

Chapter 7. Error Handling, Tracing, and Testing 263

openFile(fs, filename);
try
{

c = getFirstChar(fs);
cout << “Here is first character: ” << c << endl;

}
catch(IException ie)
{

cout << “Type of exception is: ” << ie.name() << endl;
cout << “Location of exception is: ”

<< ie.locationAtIndex(0)->fileName() << endl;
if (ie.isRecoverable())
{

cout << “Exception is recoverable” << endl;
}
else
{

cout << “Exception is unrecoverable” << endl;
}

}
return 0;

}

Suppose that you execute this example, and the source.dat file is not available. The
call to open in the OpenFile function will fail. When the program calls getFirstChar
within the try block, the IASSERTSTATE macro will throw an exception. The catch
statement in main() will catch this exception, and the output will look something like
this:
Type of exception is: IException
Location of exception is: iopen.cpp
Exception is recoverable

“Exceptions in the IBM Open Class” on page 259

“Use Throw Macros” on page 261
“General Exceptions” on page 260

Handle Exceptions

Use try and catch: Many functions throw exceptions when they encounter
unusual situations. To ensure that your code is robust, you should call such
functions from within a try-block and then either handle or rethrow any resulting
exceptions from within a catch-statement.

Because all exceptions are derived from the IException class, a single catch
statement can catch any exception that might be thrown. The following example
illustrates how you can do this:

catch(IException &ie)
{

// ...
// code for all exception class exceptions

}

On the other hand, if you wanted to deal with each kind of exception separately,
you could have catch statements that looked like this:

catch(IAccessError &ia)
{

// ...

264 IOC Library User’s Guide

// code for IAccessError exceptions
}
catch(IAssertionFailure &iaf)
{

// ...
// code for IAssertionFailure exceptions

}
// ...

The following example illustrates how you can safely call a function that might throw
an exception. This sample code calls the new operator to create a huge array of
integer pointers. The new operator throws an IOutOfMemory exception when there
is insufficient memory available to satisfy a request for memory.

In the following code, a single invocation of the new operator exhausts all of the
memory that is available for allocation. The catch statement specifies the base
class IException rather than IOutOfMemory. If you know that a member function
may throw an exception, but you do not know its exact type, you can specify a
catch statement like this one to catch any possible exception.

// The new operator throwing an exception

#include <iostream>
#include <iexcbase.hpp>
#include <istring.hpp>

#define TOOBIG 1000000000

int main(int argc, char *argv[])
{

int i;
try
{

int* istr = new int[TOOBIG];
}
catch(IException &ie)
{

std::cout << “Type of exception is: ”
<< ie.name() << std::endl;

std::cout << “Location of exception is: ”
<< ie.locationAtIndex(0)->fileName()
<< std::endl;

if (ie.isRecoverable())
std::cout << “Exception is recoverable”

<< std::endl;
else

std::cout << “Exception is unrecoverable”
<< std::endl;

}
return 0;

}

Assuming that the constant TOOBIG is large enough to exhaust all of the memory
available for allocation, this code produces the following output:
Type of exception is: IOutOfMemory
Location of exception is: ibase.cpp
Exception is unrecoverable

The following is another example illustrating how you can safely call a function that
might throw an exception. If you use the subscript operator on an IString object that
is declared const, the operator will throw an IInvalidRequest exception if the index is
out of the bounds of the IString object.

In the following code, an IString object is declared const, and then the subscript
operator is used with an index beyond the size of the object.

Chapter 7. Error Handling, Tracing, and Testing 265

// Example that causes a subscript
// out of bounds exception

#include <iostream>
#include <iexcbase.hpp>
#include <istring.hpp>

int main(int argc, char *argv[])
{

try
{

const IString ConstStr = “OFF”;
std::cout << ConstStr[4] << std::endl;

}
catch(IException &ie)
{

std::cout << “Type of exception is: ”
<< ie.name() << std::endl;

std::cout << “Location of exception is: ”
<< ie.locationAtIndex(0)->fileName()
<< std::endl;

if (ie.isRecoverable())
std::cout << “Exception is recoverable”

<< std::endl;
else

std::cout << “Exception is unrecoverable”
<< std::endl;

}
return 0;

}

Because the index is beyond the size of the IString object, the subscript operator
throws an exception. When this code is run, the following output is produced:
Type of exception is: IInvalidRequest
Location of exception is: istring5.cpp
Exception is recoverable

“Exceptions in the IBM Open Class” on page 259

“Rethrow Exceptions”
“Derive Your Own Exceptions” on page 268

Rethrow Exceptions: Once you catch an exception that has been thrown, you
can rethrow it using the IRETHROW macro.

The IRETHROW macro accepts as input a predefined instance of any subclass of
IException that has been previously thrown and caught. Like the ITHROW macro, it
also captures the location information, and logs all instance data before rethrowing
the exception.

The following example demonstrates the use of the IRETHROW macro:

1. The program attempts to output the first character of the file source.dat.

2. If this attempt fails, the program throws an exception, then tries to access the
file source.bak.

3. If the program fails to access the file source.bak, the program rethrows the
exception.

// Using the IRETHROW macro
#include <iostream.h>
#include <fstream.h>

266 IOC Library User’s Guide

#include <iexcbase.hpp>

void openFile(fstream& fs, char *filename)
{

fs.open(filename, ios::in);
}

char getFirstChar(fstream& fs)
{

char c;
if (fs.get(c) == 0)
{

ITHROW(IAccessError(“Cannot locate file.”));
}
return c;

}

char accessSourceFile()
{

fstream fs;
char c;
char *filename = “source.dat”;
cout << “Accessing file: ” << filename << endl;
openFile(fs, filename);
try
{

return getFirstChar(fs);
}
catch(IAccessError &ie)
{

cout << ie.text() << endl;
cout << “Trying source.bak” << endl;
fstream fsBackup;
char *backup = “source.bak”;
openFile(fsBackup, backup);
if (fs.get(c) == 0)
{

IRETHROW(ie);
}
else
{

return c;
}

}
}

int main(int argc, char *argv[])
{

char c;
try
{

c = accessSourceFile();
cout << “Here is first character: ”

<< c << endl;
}
catch(IAccessError &ie)
{

cout << ie.text() << endl;
}
return 0;

}

If the program cannot access either of the source files (source.dat and source.bak),
the program outputs the following:

Chapter 7. Error Handling, Tracing, and Testing 267

Accessing file: source.dat
Cannot locate file.
Trying source.bak
Cannot locate file.

“Exceptions in the IBM Open Class” on page 259

“Use try and catch” on page 264
“Derive Your Own Exceptions”

Derive Your Own Exceptions
When deriving your own exception classes from IException, if you do not need to
add more functionality to your classes, such as specialized member functions or
variables, you can use the IEXCLASSDECLARE and IEXCLASSIMPLEMENT
macros:

v The IEXCLASSDECLARE macro creates a declaration for a subclass of
IException or one of its subclasses.

v The IEXCLASSIMPLEMENT creates a definition for a subclass of IException or
one of its subclasses.

These macros allow you to easily create a hierarchy of exception classes. The
following example demonstrates the use of the IEXCLASSDECLARE and
IEXCLASSIMPLEMENT macros. The program creates a simple hierarchy
of exceptions. These exceptions have the same functionality as IAccessError
exceptions. The main() function demonstrates an advantage of using a hierarchical
structure for your exceptions: the ability to more precisely define and handle
anomalies that might occur in your program:
// Using the IEXCLASSDECLARE and IEXCLASSIMPLEMENT macros
#include <iostream.h>
#include <fstream.h>
#include <iexcbase.hpp>

IEXCLASSDECLARE (MyFileError, IAccessError);
IEXCLASSDECLARE (MyCannotOpenFile, MyFileError);
IEXCLASSDECLARE (MyCannotSaveFile, MyFileError);

IEXCLASSIMPLEMENT (MyFileError, IAccessError);
IEXCLASSIMPLEMENT (MyCannotOpenFile, MyFileError);
IEXCLASSIMPLEMENT (MyCannotSaveFile, MyFileError);

int main(int argc, char *argv[])
{

try
{

ITHROW(MyCannotSaveFile(“My derived exception.”));
}
catch(MyCannotOpenFile &ie)
{

cout << “Catch block that accepts ”
<< “MyCannotOpenFile exceptions.” << endl
<< “Type of exception is: ” << ie.name() << endl;

}
catch(MyCannotSaveFile &ie)
{

cout << “Catch block that accepts ”
<< “MyCannotSaveFile exceptions.” << endl
<< “Type of exception is: ” << ie.name() << endl;

}
catch(IException &ie)

268 IOC Library User’s Guide

{
cout << “Catch block that accepts all ”

<< “IException derived exceptions.” << endl
<< “Type of exception is: ” << ie.name() << endl;

}
return 0;

}

This program produces the following output:
Catch block that accepts MyCannotSaveFile exceptions.
Type of exception is: MyCannotSaveFile

“Exceptions in the IBM Open Class” on page 259
“General Exceptions” on page 260

“Use Throw Macros” on page 261
“General Exceptions” on page 260
“Use Assertion Macros” on page 263
“Use try and catch” on page 264
“Rethrow Exceptions” on page 266
“Use Trace Macros”

Use Trace Macros
The ITrace class provides a set of facilities that allow you to put trace statements in
your code. When an exception is thrown, trace records are output with information
about the exception. The ITrace class allows you to send trace output to standard
output or to capture it in a file.

By defining certain macros, you can selectively turn tracing on and off. There are
three special trace macros:

v IC_TRACE_RUNTIME

v IC_TRACE_DEVELOP

v IC_TRACE_ALL

By defining or not defining these macros, you can specify whether or not the trace
macros are expanded, and thus whether or not your program produces trace
output.

If IC_TRACE_RUNTIME is defined, the following macros are expanded:

Macro Description

IMODTRACE_RUNTIME Takes one argument that is the name of the
current module. It creates an ITrace object
using the module name as the name of the
trace and the current line number as the line
number. You cannot pass a temporary string
to this macro. In most cases you can use
IFUNCTRACE_RUNTIME instead.

IFUNCTRACE_RUNTIME This macro takes no arguments. It creates
an ITrace object using the function name as
the name of the trace and the current line
number as the line number.

Chapter 7. Error Handling, Tracing, and Testing 269

Macro Description

ITRACE_RUNTIME This macro takes a single argument. This
argument is written to the trace location.

If IC_TRACE_DEVELOP is defined, all of the macros that are expanded when
IC_TRACE_RUNTIME is defined are also expanded. In addition, the following
macros are expanded:

Macro Description

IMODTRACE_DEVELOP Takes one argument. Typically you use the
argument to name the current module. This
macro creates an ITrace object using the
module name as the name of the trace and
the current line number as the line number.
You cannot pass a temporary string to this
macro. In most cases you can use
IFUNCTRACE_DEVELOP instead.

IFUNCTRACE_DEVELOP Takes no arguments. It creates an ITrace
object using the function name as the name
of the trace and the current line number as
the line number.

ITRACE_DEVELOP Takes a single argument. This argument is
written to the trace location.

If IC_TRACE_ALL is defined, all of the macros that are expanded when
IC_TRACE_DEVELOP is defined are also expanded. In addition, the following
macros are expanded:

v IMODTRACE_ALL

v IFUNCTRACE_ALL

v ITRACE_ALL

The ALL prefix will define all trace macros.

The following code shows one way that you could use the trace macros to produce
trace output for your programs. In this code, the macros IFUNCTRACE_DEVELOP
and ITRACE_DEVELOP are used to create trace statements that indicate that the
flow of control has passed through the functions openFile and getFirstChar.

// Producing trace output with the ITrace class

#define IC_TRACE_DEVELOP

#include <iostream>
#include <fstream>
#include <iexcbase.hpp>
#include <itrace.hpp>

void openFile(std::fstream& fs, char *filename)
{

IFUNCTRACE_DEVELOP();
fs.open(filename, std::ios::in);
ITRACE_DEVELOP(“after open statement”);

}

char getFirstChar(std::fstream& fs)
{

char c;
IFUNCTRACE_DEVELOP();

270 IOC Library User’s Guide

fs.get(c);
ITRACE_DEVELOP(“after get statement”);
return c;

}

int main(int argc, char *argv[])
{

char c;
char * filename = “source.dat”;
std::fstream fs;

// static functions to enable tracing and direct
// tracing output to standard output

ITrace::enableTrace();
ITrace::writeToStandardOutput();
openFile(fs, filename);
c = getFirstChar(fs);
std::cout << “Here is first character: ”

<< c << std::endl;
return 0;

}

Notice that, in this code, the static functions enableTrace and
writeToStandardOutput are used to enable tracing and to direct the trace output to
standard output.

Because the macro IC_TRACE_DEVELOP is defined, the trace macros produce
trace output. In addition, the trace output has been explicitly directed to standard
output, so the output of the code looks like this:
+openFile(fstream&,char*)

>after open statement
-openFile(fstream&,char*)
+getFirstChar(fstream&)

>after get statement
-getFirstChar(fstream&)
Here is first character: t

Suppose that you wanted to turn off the trace output in this program. One way to do
it is to modify the code so that the macro IC_TRACE_DEVELOP is not defined. If
you do this, the trace macros are not expanded, and no trace output is produced.
The output of this code with IC_TRACE_DEVELOP not defined looks like this:
Here is first character: t

Trace Environment Variables
In order to obtain runtime trace information from IBM Open Class, you must set the
environment variables ICLUI_TRACE and ICLUI_TRACETO. The ICLUI_TRACETO
environment variable takes precedence over the ICLUI_TRACE environment
variable. To turn off tracing, unset the ICLUI_TRACETO environment variable or set
the ICLUI_TRACE environment variable to OFF.

The folowing table describes the trace environment variables:

Trace Environment Variables Description

ICLUI_TRACE Can be set to the following:

v OFF (default value)

v ON

v NOPREFIX (no prefix information is
written)

Chapter 7. Error Handling, Tracing, and Testing 271

Trace Environment Variables Description

ICLUI_TRACETO Can be set to the following:

v STDERR or ERR (writes to standard error)

v STDOUT or OUT (writes to standart out)

v FILE (writes to a file)

v QUEUE (writes to queue. This is the
default value.)

v PMPRINTF

Standard output and queue are the
same.

ICLUI_TRACEFILE Specifies the file name. This is used when
ICLUI_TRACETO is set to FILE.

ICLUI_CHECKSTACK Can be set to ON or TRUE
to check the renaming stack size.

“Exceptions in the IBM Open Class” on page 259
“Application Testing Overview”

“Use Throw Macros” on page 261
“General Exceptions” on page 260
“Use Assertion Macros” on page 263
“Use try and catch” on page 264
“Rethrow Exceptions” on page 266
“Derive Your Own Exceptions” on page 268

Application Testing Overview
The IBM Open Class Test Framework helps you create and run your test cases. It
provides base classes with a standard format for writing tests, accepting inputs, and
reporting results. You just need to write a test subclass and override certain
functions. The Test Framework also provides, through runtest macros, a main()
function that controls the execution of tests. You include these macros to let the
Test Framework run your tests and deal with the flow of control.

Use the Test Framework to perform the following tasks:

v Ensure that a target test class runs properly

v Group tests, so that more than one test is performed at a time

v Perform the timing measurements of a test class

v Test an entire tree of classes that adheres to the same protocol

“Test Framework Components” on page 273

“Create a Base Test Class” on page 274
“Set Up the Environment” on page 275
“Use Trace Macros” on page 269

272 IOC Library User’s Guide

Test Framework Components
The core of the Test Framework consists of the base class ITest and a number of
associated classes, which can be subdivided into several categories according to
their characteristics:

v Multiple tests:

– ITestCollection

– ITestMultiplexer

v Timing tests:

– ITimingTest

– IStartStopTimingTest

v Protocol tests

– IComparisonTestOf

– IStreamTestOf

v Auxiliary classes

– ITieredTextBuffer

– IArgumentDictionary

v Test macros:

– for single tests:

- runTestImplementationMacro

- beginTestFrameworkMacro

– for several tests:

- runTestMacro

- endTestFrameworkMacro

- runTestResultMacro

– for protocol tests:

- comparisonTestMacro

- IStreamTestMacro

Test Classes
A target class is a class in your program that you want to test for correct
performance. You write a test class, derived from a Test Framework class, that runs
the target class and does the evaluation.

ITest is the abstract base class from which all test classes are derived, including the
test class that you write and declare to be a friend of your target class. You can
derive directly from ITest to perform simple tests. In addition specialized subclasses
derived from ITest provide three kinds of functionality:

v Multiple tests group tests so that you can perform more than one test at a time

v Timing tests performs timing measurements

v Protocol tests traverse an entire tree of classes and tests them adhering to the
same protocol

The test classes work by creating and evaluating an instance of your target class.
You do not have to make changes directly to your target class code to test its
behavior.

Runtest macros
The Test Framework defines several macros that you may use to create
applications to run your tests:

Chapter 7. Error Handling, Tracing, and Testing 273

v To automatically generate a main function to run a single test, use
runTestImplementationMacro.

v To create your own application to run several tests, use
beginTestFrameworkMacro, runTestMacro, endTestFrameworkMacro, and
runTestResultMacro.

v For protocol tests, use comparisonTestMacro and IStreamTestMacro.

The ITest Base Class
The core of the Test Framework is the class ITest, an abstract base class that
defines the protocol for an executable test. ITest is a framework that contains the
following:

v A test success state (not set, pass, or fail)

v A target object on which tests are performed

v Input through a collection of IString objects

v Output via an object with ostream-like behavior

v Textual metainformation description about the test such as the purpose of the
test and the name of the class being tested

v Uniform exception handling by the Test Framework

To write a test, you generally write a subclass of ITest. This subclass overrides the
test function and, optionally, the associated framework functions reset, setup, and
cleanup. To run the test, you generally use the runTestImplementationMacro to
create an application that defines the main function to create and run the test.

“Application Testing Overview” on page 272
“Test Framework Components” on page 273
“Test Macros” on page 290

“Create a Base Test Class”
“Set Up the Environment” on page 275

Create a Base Test Class
Follow these steps to create a test:

1. Identify the types of operations you want to test.

2. Derive your test class from the appropriate Test Framework class. For most
tests, you derive your test from ITest, so the minimum requirement for using the
Test Framework is to include itest.hpp.

3. Give your test class access to the target class you are testing.

4. Override the test function in your test class.

5. Override setup and cleanup functions, if necessary.

6. Override the inherited ITest functions with your data members. The functions
you need to override are operator<<= and operator>>=.

7. When you are ready to perform the test, use a runtime macro.

“Exceptions in the IBM Open Class” on page 259
“Application Testing Overview” on page 272

274 IOC Library User’s Guide

“Set Up the Environment”
“Test with Input Arguments”
“Get Metainformation” on page 276
“Example: A Simple Test” on page 277

Set Up the Environment
The ITest::setup() function allows you to prepare for your test before calling the
ITest::test() function. Override setup to specify any special conditions that the test
requires. A common activity to handle during setup is to parse command-line
arguments that you can pass into a test.

The Test Framework provides the cleanup function, which you can use to perform
any necessary cleanup after your test finishes. You need to override cleanup to
restore the system to its previous state by undoing any actions, such as storage
allocation, performed within setup that affect the state of the system. The cleanup
function is executed even if a software exception occurs. If a hardware exception
occurs in the ITest function, such as a bus error, then cleanup is not called.

“Exceptions in the IBM Open Class” on page 259
“Application Testing Overview” on page 272

“Create a Base Test Class” on page 274
“Test with Input Arguments”
“Get Metainformation” on page 276
“Example: A Simple Test” on page 277

Test with Input Arguments
This example shows how a test can read input arguments.

#include <itest.hpp>
#include <iargdict.hpp>
#include <iruntest.hpp>
#include <ilanglvl.hpp>

class INumberAtTest : public ITest {
public:

INumberAtTest();
virtual xINumberAtTest();

protected:
virtual void setup();
virtual void test();

private:
ioc::numeric_t fTimingCount;
ioc::numeric_t fSampleCount;

};

INumberAtTest::INumberAtTest()
{

fTimingCount = 5; // Default value
fSampleCount = 10; // Default value

}

INumberAtTest::xINumberAtTest() { }

Chapter 7. Error Handling, Tracing, and Testing 275

void INumberAtTest::test()
{

outputTextStream() << “INumberAtTest timing count=”
<< fTimingCount << “ , sample count=”
<< fSampleCount << '\n';

setSuccess(true);
}

void INumberAtTest::setup()
/*

Setup reads input arguments of the form:

[-c <timing count>] [-s <sample count>]

The timing count must be in the range 1..256. The sample count must
be greater than 5. If the counts are not given, they remain unchanged.
If a bad input is given, the test fails.

*/
{

static const IString kTimingCountKey(“-c”);
const long kminTimingCount=1;
const long kmaxTimingCount=256;
static const IString kSampleCountKey(“-s”);
const long kminSampleCount=5;
IArgumentDictionary args(*this);

if (!args.numberAt(kTimingCountKey, fTimingCount, kminTimingCount, kmaxTimingCount) ||
!args.numberAt(kSampleCountKey, fSampleCount, kminSampleCount)) {

outputTextStream() << “error parsing input arguments.\n”;
setSuccess(false);

}
}
runTestImplementationMacro(INumberAtTest);

“Exceptions in the IBM Open Class” on page 259
“Application Testing Overview” on page 272

“Create a Base Test Class” on page 274
“Set Up the Environment” on page 275
“Get Metainformation”
“Example: A Simple Test” on page 277

Get Metainformation
The Test Framework provides a means for getting textual metainformation about a
test. To do this, override the ITest::copyInfo() function. Inside copyInfo, call the
inherited implementation, then add key-value pairs with the metainformation for their
ITest subclass.

For example:
class IMyTest: public ITest
{

// ...
protected:

void copyInfo();
};

void IMyTest::copyInfo()
{

ITest::copyInfo();

276 IOC Library User’s Guide

addInfo(kDescriptionKey, “Test which tests ITest.”);
addInfo(kInputSyntaxKey, “[-r <run count>]”);
addInfo(kTargetClassKey, “ITarget”);

}

“Exceptions in the IBM Open Class” on page 259
“Application Testing Overview” on page 272

“Create a Base Test Class” on page 274
“Set Up the Environment” on page 275
“Test with Input Arguments” on page 275
“Example: A Simple Test”

Example: A Simple Test
The ITest subclass ISimpleTest is a very simple test of ITarget. ISimpleTest
overrides ITest::test() to check if ITarget::maxLength() returns a correct value. To
perform this test, it creates an object of a target class and calls maxLength(). If the
result is correct, it sets Success to true; otherwise, it sets Success to false.

The following is the listing of the file itarget.hpp:
// itarget.hpp
class ITarget
{
public:

ITarget(int maxlength) { fMaxLength = maxlength;}
virtual xITarget() {}
int maxLength() { return fMaxLength; }

private:
int fMaxLength;

};

The following is the listing of the file itarget.cpp:
// itarget.cpp
// test class
#include <iruntest.hpp>
#include <itest.hpp>
#include “itarget.hpp”

class ISimpleTest : public ITest
{
public:

ISimpleTest();
virtual xISimpleTest();

protected:
virtual void test();

private:
};

ISimpleTest::ISimpleTest() { }

ISimpleTest::xISimpleTest() { }

void ISimpleTest::test()
{

int correctLength = 100;

ITarget target(correctLength);
if (target.maxLength() != correctLength)

Chapter 7. Error Handling, Tracing, and Testing 277

{
outputTextStream() << “length doesn't match”;
setSuccess(false);

}
else

setSuccess(true);
}

runTestImplementationMacro(ISimpleTest);

“Exceptions in the IBM Open Class” on page 259
“Application Testing Overview” on page 272

“Create a Base Test Class” on page 274
“Set Up the Environment” on page 275
“Test with Input Arguments” on page 275
“Get Metainformation” on page 276

The Decision Function
You can group your tests by combining multiple operations into a single test class.

A decision function is the code you write that determines if the code you are testing
does what you expect. Using a single ITest object to test several functions allows
the test decision functions to share code and functions.

The ITestCollection Class
ITestCollection is a subclass of ITest that tests a collection of ITest objects. This
allows you to group related ITest subclasses together within a single test. The tests
in the collection are run sequentially to determine the success or failure of the entire
group. The resulting test passes if all of its subtests pass; otherwise fails. By
default, the subtests are always executed in a fixed order (the order in which you
add subtests). The subtests can be run in random order if you call the
randomlyReorder function after adding subtests. By default, ITestCollection does not
halt if a subtest fails, but runs all the subtests. To change this default behavior, call
setHaltOnFail(true) in your setupSubtests.

The ITestMultiplexer Class
ITestMultiplexer is a subclass of ITest that supports the model of multiple decision
functions applied to a single test target. These decision functions are invoked using
test keys. You write a group of decision functions, then build a table that maps keys
to functions. This helps you avoid the duplication of setup and cleanup code for the
functions that share them.

Keys are case-sensitive IString objects that select the decision function to run when
the test function is called. You can use keys in three ways:

v Specify a single key with setDecisionKey.

v Specify the key kAllDecisions with setDecisionKey. This will call all decision keys.

v Specify how many of the ITest input arguments will be interpreted as keys with
the setInputsAsKeys function.

The default behavior is to run all decisions.

278 IOC Library User’s Guide

“Application Testing Overview” on page 272
“Test Framework Components” on page 273

“Run a Sequence of Tests”
“Run Tests with Decision Functions”

Run a Sequence of Tests
IColTest is a subclass of ITestCollection. It tests three subtests (ISubtest1,
ISubtest2, and ISubtest3), which are all subclasses of ITest. The example runs the
tests in random order. Also, IColTest halts on the failure of any subtest.

class IColTest : public ITestCollection
{
public:

IColTest();
xIColTest();
void setupSubtests();

};

IColTest::IColTest() {}
IColTest::xIColTest() {}
void IColTest::setupSubtests()
{

ISubtest1* test1 = new ISubtest1(100);
ISubtest2* test2 = new ISubtest2();
ISubtest3* test3 = new ISubtest3(“Hello”);

adoptTest(test1);
adoptTest(test2);
adoptTest(test3);

randomlyReorder(56734);
setHaltOnFail(true);

}

runTestImplementationMacro(IColTest);

“Application Testing Overview” on page 272
“Test Framework Components” on page 273
“The Decision Function” on page 278

“Run Tests with Decision Functions”

Run Tests with Decision Functions
Run tests with decision functions using ITestMultiplexer.

In the following example, IMulTest is a subclass of ITestMultiplexer. There are three
decision functions, appleFunction, bearFunction, and cartFunction. Each of these
functions tests the different aspects of the target class (although they just return
true in this example). Decision functions should accept no parameter and should
return bool. IMulTest reports PASS when all the three functions return true:

class IMulTest: public ITestMultiplexer
{
public:
IMulTest();
xIMulTest();
void loadDecisions();

Chapter 7. Error Handling, Tracing, and Testing 279

bool appleFunction();
bool bearFunction();
bool cartFunction();
};

IMulTest::IMulTest() {}
IMulTest::xIMulTest() {}
void IMulTest::loadDecisions()
{
addDecision(“apple”,(ITestDecisionFn)appleFunction);
addDecision(“bear”, (ITestDecisionFn)bearFunction);
addDecision(“cart”, (ITestDecisionFn)cartFunction);
}
bool IMulTest::appleFunction() { return true;}
bool IMulTest::bearFunction() {return true;}
bool IMulTest::cartFunction() {return true;}

runTestImplementationMacro(IMulTest);

“Application Testing Overview” on page 272
“Test Framework Components” on page 273
“The Decision Function” on page 278

“Run a Sequence of Tests” on page 279

Timing Tests
The ITimingTest base class enables you to write tests that measure the time a
specific operation takes to complete. The derived class IStartStopTimingTest gives
you more control in timing events.

ITimingTest is the principle class used to measure CPU performance. It measures
the time a well-defined operation (such as adding a member to an IACollection
subclass) takes to execute.

ITimingTest expects the operation to show some variation in execution time
because of multitasking, varying CPU load, and other variable conditions.
Consequently, the class takes multiple measurements and reports the median.

ITimingTest contains three framework functions: TimingSetup, TimingTest, and
TimingCleanup. Only the TimingTest function is timed. The TimingSetup and
TimingCleanup functions run before and after TimingTest, but are not themselves
timed.

IStartStopTimingTest
IStartStopTimingTest is an abstract framework class for timing measurements too
complicated to do with ITimingTest. It is a subclass of ITimingTest that has the
following characteristics:

1. Lower precision

2. The ability to start and stop the timer

Use IStartStopTimingTest if you have to start and stop the timer multiple times.
Because of the lower precision, use ITimingTest whenever possible.

To use, subclass and override startStopTimingTest in the same manner as you
would override ITimingTest::timingTest.

280 IOC Library User’s Guide

For example, consider a class INetThing that queries the network. Only the first
instantiation of INetThing performs a certain action. To test the initial
object-constructor time of INetThing, you would delete each existing INetThing
before the next one is constructed. You would use the following sequence within the
timing loop:

1. Begin timing.

2. Instantiate INetThing.

3. Stop timing.

4. Delete INetThing.

Because it takes a substantial amount of time to measure time itself, when the timer
is started or stopped, IStartStopTimingTest can only measure times in milliseconds.

“Application Testing Overview” on page 272
“Test Framework Components” on page 273
“Structure of Timing Loops”
“Accuracy and Tolerance of Timing Tests” on page 282
“Success Criteria and Precision of Timing Tests” on page 282

“Example: Perform Timing Tests” on page 284

Structure of Timing Loops
The time needed to execute the timingTest function is measured by taking a
number of samples called the sample count. Each sample consists of a call to
timingSetup, a number of calls to timingTest, and a call to timingCleanup.

The calls to timingTest happen in a tight loop called the timing loop. Subclasses or
the caller can control how many iterations comprise the timing loop by changing the
timing count. The total time taken by the timing loop is divided by the number of
iterations to get a single sample time. The median of all sample times is taken as
the estimate of the time to execute the TimingTest function.

“Timing Tests” on page 280
“Accuracy and Tolerance of Timing Tests” on page 282
“Success Criteria and Precision of Timing Tests” on page 282

“Example: Perform Timing Tests” on page 284

Chapter 7. Error Handling, Tracing, and Testing 281

Accuracy and Tolerance of Timing Tests
Accuracy
Calls to the timingTest function incur an overhead because of the time required to
make the virtual function call. ITimingTest compensates for this by computing an
empty function time, which is the estimated time to make a call to an empty virtual
function. This time is subtracted from each sample time in order to calibrate for this
overhead.

Another way to increase the accuracy of timing tests is to increase the timing count
to divide the various sources of error across more iterations. In general, the value of
the timing count should be at least 100.

Tolerance
ITimingTest usually runs in automatic mode. In this mode, samples are taken
sequentially until the error for the estimated time declines to some percentage. This
percentage is the tolerance. For example, if the tolerance is 0.05, then samples will
continue to be taken until the time measurement has an error of plus or minus 5%.

Automatic sampling estimates the mean of a moving window of samples. This
window is sample count samples wide. The error of the mean is half of the 95%
confidence interval. When this error (expressed as a fraction) declines below the
tolerance, then the window is accepted and its mean returned as the estimated
time.

It is possible that the time being measured might never stabilize, and that the
required tolerance might never be reached. To handle this contingency, an upper
limit has been set on the number of samples taken during automatic sampling. If
the maximum number of samples is taken, and samples still have not converged, a
warning is issued and the final window is accepted.

You might not want to use automatic timing for some tests. If you disable automatic
timing, then the number of samples specified by the sample count is taken and their
median returned as the measured time, regardless of the error. In this case,
tolerance is ignored.

“Timing Tests” on page 280
“Structure of Timing Loops” on page 281
“Success Criteria and Precision of Timing Tests”

“Example: Perform Timing Tests” on page 284

Success Criteria and Precision of Timing Tests
Success and Failure
A timing test fails:

v If some function calls setSuccess(false)

v If the time measurement itself fails

v If the test results in a value less than zero, which indicates a problem with
calibration

In the absence of these events, if the measurement reaches the required tolerance
within the specified maximum allowed time, the test succeeds.

282 IOC Library User’s Guide

Precision
The timing test class attempts to correctly report the precision of its results by
taking the following measurements:

v The standard deviation of all samples. This is used to compute a 95% confidence
interval for the average.

v Timing overhead. This is measured by calling the internal timer repeatedly and
measuring the time required to do so.

The contribution of timing overhead to errors in event-time measurement is
estimated as follows:

The bar represents a single sample. The two boxes labeled a at the ends of the bar
represent the timing overhead. The left end of the box is the time at which the call
to a timing function is initiated, and the right end of the box is the time at which the
call returns. The resulting value may represent time at any point within the box. The
minimum measured time is exactly the event time multiplied by the number of
iterations. The maximum measured time is the event time multiplied by the number
of iterations plus 2a. This is the worst case. The actual event time falls somewhere
in between.

ITimingTest reports the most pessimistic interpretation that is reasonable. It reports
each timing measurement as the upper end of the 95% confidence interval for the
event time, plus an upper-bound estimate of 2a/n for the timing overhead. A greater
sample count decreases error by reducing the size of the confidence interval; a
larger timing count decreases error by distributing the timing overhead over more
events.

ITimingTest parses command line arguments. These arguments modify the way in
which timing is done. They may also be supplied programmatically (see ITest).

Argument Description

-at tol Set the tolerance for automatic sampling to
tol (default = 0.1).

-c count Set the operations per sample to count
(default = 100).

-cc Calibrate continually by measuring the empty
loop time before each sample.

-co correlation Set the minimum correlation between
samples for which to post an error to
correlation (default = 0.4).

-m maxTime Consider this test to fail if the median time
per operation is greater than maxTime
(default = none). The units of maxTime are in
microseconds.

-na Turn off automatic timing.

-s n Take n samples, each sample consisting of
many operations (default = 10).

-t Do not do timing tests; just execute one
operation without timing.

Chapter 7. Error Handling, Tracing, and Testing 283

Argument Description

-w maxWindows Stop if times do not converge within
maxWindows of automatic sampling (default
= 10).

The start-stop timing test attempts to correctly report the precision of its results by
estimating the dispersion of samples and the sampling error as follows:

v Each sample consists of one or more segments. These segments represent
timed events, beginning with a call to start an internal timer, the activity being
timed, and a call to stop the internal timer. Let k be the number of segments per
sample.

v The Test Framework makes the pessimistic assumption that the measured time
for each segment has a potential error range of 2a, where a is the timing
overhead.

The contribution of timing overhead to errors in IStartStopTimingTest event-time
measurement is also estimated. The boxes labeled a at the ends of the bar
represent the timing overhead. This diagram represents a single sample, which
consists of one or more segments. Each segment is bracketed on each end by the
timing overhead.

v The minimum measured time is exactly the event time multiplied by the number
of segments, k. The maximum measured time is the event time times k plus 2ka.
Thus, the worst-case error is 2ka.

v As is the case with ITimingTest, increasing the sample count reduces the
dispersion between samples. Unlike ITimingTest, however, increasing the timing
count does nothing to reduce the sampling error because the timing overhead is
incurred repeatedly within the sampling loop, rather than only at the start and
finish.

“Timing Tests” on page 280
“Structure of Timing Loops” on page 281
“Accuracy and Tolerance of Timing Tests” on page 282

“Example: Perform Timing Tests”

Example: Perform Timing Tests
This code shows a simple test that reports how long it takes to add an object to a
sequence.

#include <itest.hpp>
#include <itimetst.hpp>
#include <iruntest.hpp>
#include <iseq.h>
#include <istring.hpp>

class ISequenceAddTimingTest : public ITimingTest {
public:

ISequenceAddTimingTest();
virtual xISequenceAddTimingTest();

284 IOC Library User’s Guide

protected:
virtual void timingSetup();
virtual void timingTest();
virtual void timingCleanup();

private:
IString **fObject; // Array of pointers to objects to be added
long fObjectArraySize; // Number of items in fObject
IString **fNextObject; // Pointer to next pointer to add
ISequence<IString> fSequence; // Deque to add to

};

ISequenceAddTimingTest::ISequenceAddTimingTest()
{

fObject = NULL;
fObjectArraySize = 0;

}

ISequenceAddTimingTest::xISequenceAddTimingTest()
{

timingCleanup(); // Just in case timingSetup was called without timingCleanup
}

void ISequenceAddTimingTest::timingSetup()
{

timingCleanup(); // Just in case timingSetup was called without timingCleanup

fObjectArraySize = timingCount();
fObject = new IString*[fObjectArraySize];
for (long i=0; i < fObjectArraySize; i++)

fObject[i] = new IString;
fNextObject = &fObject[0];

}

void ISequenceAddTimingTest::timingTest()
{

fSequence.add(**fNextObject++);
}

void ISequenceAddTimingTest::timingCleanup()
{

if (fObject != NULL) {
for (long i=0; i < fObjectArraySize; i++)
delete fObject[i];
delete[] fObject;
fObject= NULL;

}
}

runTestImplementationMacro(ISequenceAddTimingTest);

“Application Testing Overview” on page 272
“Timing Tests” on page 280
“Structure of Timing Loops” on page 281
“Accuracy and Tolerance of Timing Tests” on page 282
“Success Criteria and Precision of Timing Tests” on page 282

“Create a Base Test Class” on page 274
“Set Up the Environment” on page 275

Chapter 7. Error Handling, Tracing, and Testing 285

Protocol Tests
The Test Framework contains two ready-made protocol tests implemented using
template classes:

v IComparisonTestOf

v IStreamTestOf

Protocol tests help leverage testing effort by allowing you to test classes when
those classes are expected to adhere to some protocol.

If your object uses the default comparator and default streamer, protocol macros let
you write entire protocol tests with a single line.

You can use the protocol macros whenever you can create the target with a single
parameter list. You cannot use the macros if you need to create or reference other
objects in order to create your target. In this case, you must derive your protocol
test class from the appropriate template class.

“Application Testing Overview” on page 272
“Test Framework Components” on page 273

“Perform Protocol Tests”

Perform Protocol Tests
The global functions createComparisonTest and createStreamTest are useful if you
want to create instances of IComparisonTestOf or IStreamTestOf and run those
tests under ITestCollection using ITestCollection::adoptMethod.

class IProtocolTest : public ITestCollection
{
public:
IProtocolTest();
xIProtocolTest();
virtual void setupSubtests();
};
IProtocolTest::IProtocolTest() {}
IProtocolTest::xIProtocolTest() {}
void IProtocolTest::setupSubtests()
{
adoptTest(createComparisonTest(new IMyTest(1), new IMyTest(2)));
adoptTest(createStreamTest(new IMyTest(1)));
adoptTest(createComparisonTest(new IMyTest2MyTest2(“abc”), new IMyTest2(“xyz”)));
adoptTest(createStreamTest(new IMyTest2(“def”)));
}

runTestImplementationMacro(IProtocolTest);

“Application Testing Overview” on page 272
“Test Framework Components” on page 273

“Create a Base Test Class” on page 274
“Set Up the Environment” on page 275

286 IOC Library User’s Guide

Auxiliary Test Classes
The Test Framework defines two auxiliary classes: ITieredTextBuffer and
IArgumentDictionary.

ITieredTextBuffer
ITieredTextBuffer behaves like the C++ ostream class. It contains << operators for
all basic types. It can filter output so that detailed information is suppressed or
displayed. The text is printed directly to the console (and log file, if the log option is
specified). Each instance of ITest contains an ITieredTextBuffer to which subclasses
may stream diagnostic text messages. ITest uses this mechanism to report progress
and results.

IArgumentDictionary
IArgumentDictionary is a general-purpose class for parsing text arguments on a
command line. It takes as input an ordered collection of IString objects and parses
them as arguments on a command line into pairs of keys and values. This allows
you to quickly check for the existence of a keyword on the command line or to
retrieve the value given for a certain option.

A leading-hyphen character identifies keywords. Anything without a leading hyphen
is a value argument. A keyword picks up the following argument if it is not another
keyword.

This example shows how IArgumentDictionary parses the command-line input to a
test to create the key-value pairs:
-parm -n sample1 Joan Tom -ccc 84 85

The following table explains the options used in the example.

Key Value Description

-parm empty IText object The value associated with
-parm is an empty IText, not
NIL. This allows you to
distinguish “There is no
-parm keyword” from “There
is a -parm argument with no
associated value.”

-n sample1 The -n argument picks up the
following argument,
“sample1,” as its value.

1 Joan There is no associated
keyword, so “Joan” is
assigned key 1. The key is
an IText object, not a numeric
value.

2 Tom There is no associated
keyword, so “Tom” is
assigned key 2. The key is
an IText object, not a numeric
value.

-ccc 84 The -ccc argument picks up
the following argument, “84,”
as its value.

Chapter 7. Error Handling, Tracing, and Testing 287

Key Value Description

3 85 There is no associated
keyword, so “85” is assigned
key 3. The key is an IText
object, not a numeric value.

You also may use the specifyNakedOptions function to ensure that certain keywords
never take value arguments. Such keywords are called naked options. Here is
another example:
-s 20 -l -o sampout

The following table explains the options used in the example.

Key Value Description

-s 20 The -s argument picks up the
following argument, “20,” as
its value. The value must be
between 1 and 256.

-l no arguments The -l represents the login
option, which takes no
arguments. If a value follows
the -l, the value is taken to
be a keyless option and is
assigned the key 1. The key
is an IText object, not a
numeric value.

-o sampout The -o represents the
output-file option, which takes
a single argument.

“Application Testing Overview” on page 272
“Test Framework Components” on page 273

“Print, Display, and Store Test Results”
“Display Internal Test Information” on page 289

Print, Display, and Store Test Results
To write out diagnostic text from a test, use the outputTextStream function, which
recognizes the standard C++ << operator for all built-in types. Text output produced
with outputTextStream displays to the console and is also saved in a
ITieredTextBuffer within the test. You can then log the test, including the text buffer.
If a test fails, you can retrieve the associated diagnostic text to determine the cause
of the failure.

outputTextStream returns a pointer to a ITieredTextBuffer object that contains the
text. Objects of the class ITieredTextBuffer act like C++ ostream objects. They
support << operators for all built-in types.

Output text is printed via ITieredTextBuffer. You can acquire the ITieredTextBuffer of
the test by calling outputTextStream().

288 IOC Library User’s Guide

void IMyTest::test() // This method is in a subclass of ITest
{

outputTextStream() << “hello, world”;
}

“Hello, world” is printed out to console when test is running. Information is marked
with a level of importance. The text objects in a text buffer are ITieredText objects,
so you can show a specified amount of detail when you later retrieve the text. You
can also filter out information beyond a specific level of detail.

ITieredTextBuffer allows you to set the tier or indentation for the text. The tier levels
are defined as follows in ITieredTextBuffer:

v kTop - Top tier, most general information

v kHeadline - One-line information

v kGeneral - Information of general interest

v kNormal - Default tier

v kDetail - Detailed information not usually needed

v kDebug - Information only needed during debugging

v kBottom - Most detailed information

Most text occupies the tier kNormal. Important information that should not be
missed occupies tier kGeneral or kHeadline. Detailed information that can usually
be ignored occupies tier kDetail or kDebug.

void ISecondTest::test() // This method is in a subclass of ITest{
ITieredTextBuffer& out = outputTextStream();

out.pushTier(ITieredTextBuffer::kHeadline);
out << “running isecondtest\n”;
out.setrelativeindent(1) << '\n';
out << “options are: [-c <timing count>] [-s <sample count>]\n”;
out.setRelativeIndent(-1);

out.popTier();
}

“Application Testing Overview” on page 272
“Test Framework Components” on page 273
“Auxiliary Test Classes” on page 287

“Display Internal Test Information”

Display Internal Test Information
The Test Framework provides a means by which test classes can display internal
information in a textual format. This mechanism works in two ways:

v Callers who want to display tests use the operator<<(ITieredTextBuffer, ITest)
function. This is a global function, called whenever a test is run to display the
final state of the test. It is the primary interface by which tests present
themselves in a human-readable form.

v Writers of ITest subclasses who wish to display data present in their subclass but
absent from their base class should override the virtual framework function
ITest::print. In their overriding function, they should always call the inherited print
function first, so that base-class information is displayed.
class IMyTest: public ITest
{

...

Chapter 7. Error Handling, Tracing, and Testing 289

protected:
void print(ITieredTextBuffer&);

private:
double fImportantValue; // This is important and should be shown

};

void IMyTest::print(ITieredTextBuffer& out)
{

ITest::print(out); // First show base class information
out << “tmytest important value=” << fImportantValue << '\n';
// Always end with a '\n'.

}

The content of the print function is printed only when you set the echo tier level
equal to or below ITieredTextBuffer::kDetail (you set it through the command line).
Remember that the default echo tier level is ITieredTextBuffer::kNormal.

mytest -t IMyTest -e dTest IMyTest (PASS) // sets echo tier level

{ run count: 1
info: {}
input: {}
tMyTest important value=100

}

If you don’t include the -e option, you will see this
mytest -t IMyTest
Test IMyTest (PASS) {}

“Application Testing Overview” on page 272
“Test Framework Components” on page 273
“Auxiliary Test Classes” on page 287

“Print, Display, and Store Test Results” on page 288

Test Macros
The Test Framework defines macros that you may use to create an application that
runs tests.

The runTestImplementationMacro defines an application to run a single test. The
beginTestFrameworkMacro, runTestMacro, endTestFrameworkMacro, and
runTestResultMacro macros defines an application that runs several tests.

Applications created using these macros recognize the following options:

Option Description

-e[cho] h|g|n|d|D Set detail of diagnostic output: headline, general, normal,
detail, or Debug.

-n numberOfRuns Run the test numberOfRuns times; default is to run test
once.

-o[ptions] Pass further arguments (after the -o) to the ITest subclass.

-t[est] class Run the ITest subclass class.

-log [logfilename] Write the output into logfilename.

The -test option must be specified when running the application.

290 IOC Library User’s Guide

runTestImplementationMacro
The runTestImplementationMacro macro expands to define the entire main routine
to create and run a single test. It takes the name of the test class for its parameter.
The test object is created and the run function is called for the test. The main
routine returns with a 0 indicating that the test succeeded; otherwise, 1 is returned.

beginTestFrameworkMacro, runTestMacro, endTestFrameworkMacro,
runTestResultMacro
Use beginTestFrameworkMacro, runTestMacro, endTestFrameworkMacro, and
runTestResultMacro to create an application that can run various tests instead of
just one. The following table summarizes each of these macros:

Macro Description

beginTestFrameworkMacro Takes argc and argv for its parameters. This
macro expands the code to parse the
command-line arguments for options.

runTestMacro Takes the name of the test class for its
parameter. This macro expands the code to
create and run the text.

endTestFrameworkMacro Takes no parameters. This macro expands
the code to check if a test was run and prints
out an error if no test was run.

runTestResultMacro Returns a boolean value indicating whether
test succeeded.

To use these macros you must write your own main routine:

1. In main routine, use beginTestFrameworkMacro with the argc/argv values.

2. Use runTestMacro for each test class you wish to run.

3. Use the endTestFrameworkMacro and runTestResultMacro to get the result of
the test.

Only the test specified with the -t option is run when the application executes.

“Application Testing Overview” on page 272
“Test Framework Components” on page 273

“Example: Use Test Macros”

Example: Use Test Macros
To create an application that can run various tests instead of just one, use the
beginTestFrameworkMacro, runTestMacro, endTestFrameworkMacro, and
runTestResultMacro in your own main routine:

#include <itest.hpp>
#include <iruntest.hpp>

class IMyTest: public ITest
{
public:

...
protected:

...
};
class ISecondTest: public ITest

Chapter 7. Error Handling, Tracing, and Testing 291

{
public:

...
protected:

...
};

int main(int argc, char **argv)
{

beginTestFrameworkMacro(argc, argv);
runTestMacro(IMyTest);
runTestMacro(ISecondTest);
endTestFrameworkMacro();
return (!runTestResultMacro()); // exit with 0 if test succeeded.

}

If the code above were compiled and linked to create the application
RunDummyTests, you would execute the application in the following way to run
either IMyTest or ISecondTest:
RunDummyTests -t IMyTest -o “arguments to IMyTest are here”
RunDummyTests -t ISecondTest -n 3 -e d -o “arguments to ISecondTest are here”

“Application Testing Overview” on page 272
“Test Framework Components” on page 273
“Test Macros” on page 290

“Create a Base Test Class” on page 274
“Set Up the Environment” on page 275

292 IOC Library User’s Guide

Chapter 8. Collection Classes Overview

Collections are used to store and manage elements (or objects) of a user-defined
type. Different collections have different internal structures, performance
characteristics, and access methods for storage and retrieval of objects. The
Collection Classes implement the common collection types, such as trees, relations
and ordered lists. They provide a framework of properties to help you decide which
abstract collection type is appropriate in a given situation, and allow you to choose
how the abstract data type you have chosen is implemented.

The Collection Classes let you choose the appropriate collection type for a given
situation by providing collection classes which have a systematic and consistent
combination of basic properties. These properties help you to select the appropriate
level of abstraction. For example, you may have the choice between using a bag
and a key sorted set. The properties of these two collections will help you decide
which one is more appropriate.

The Collection Classes offer you a choice of implementations for each type of
collection. Each abstract collection class has a common interface with all of its
possible implementations. It is easy to replace one implementation with another for
performance reasons or if the requirements of your application change.

Types of Classes
The Collection Classes are divided into three types:

Type Description

Trees Recursive collections of nodes, where each
node holds an element and has a given
number of nodes as children.

Flat collections The most common types of collections,
include abstractions such as sequence, set,
bag, and map. Unlike trees, flat collections
have no hierarchy of elements or recursive
structure.

Auxiliary classes Support other classes and include classes
for cursors, iterators, and simple and
managed pointers.

The Standard Template Library and the Collection Classes
We recommend that you use the Standard Template Library (STL) instead of the
IBM Open Class Collections.

“Hierarchy and Design of the Collection Classes” on page 301
“Collection Characteristics” on page 294
“Types of Collections” on page 296

“Instantiate the Collection Classes” on page 316

© Copyright IBM Corp. 1996, 2001 293

Collection Characteristics
Four basic properties are used to differentiate between different flat collections:

Property Description

Ordering Whether a next or previous relationship
exists between elements.

Access by key Whether a part of the element (a key) is
relevant for accessing an element in the
collection. When keys are used, they are
compared using relational operators.

Equality for elements Whether equality is defined for the element.

Uniqueness of entries Whether any given element or key is unique,
or whether multiple occurrences of the same
element or key are allowed.

Ordering of Collection Elements
The elements of a flat collection class can be ordered in three ways:

v Unordered collections have elements that are not ordered.

v Sorted collections have their elements sorted by an ordering relation defined for
the element type. For example, integers can be sorted in ascending order, and
strings can be ordered alphabetically. The ordering relation is determined by the
instantiations for the collection class. For elements where the ordering relation
returns the same position, elements are added in chronological order.

v Sequential collections have their ordering determined by an explicit qualifier to
the add function, for example, addAtPosition.

A particular element in a sorted collection can be accessed quickly by using the
ordering relation to determine its position. Unordered collections can also be
implemented to allow fast access to the elements, by using, for example, a hash
table or a sorted representation. The Collection Class Library provides a fast locate
function that uses this structure for unordered and sorted collections. Even though
unordered collections are often implemented by sorting the elements, do not
assume that all unordered collections are implemented in this way. If your program
requires this assumption to be true, use a sorted collection instead.

For each flat collection, the Collection Class Library provides both unordered and
sorted abstractions. For example, the Collection Class Library supports both a set
and a sorted set. The ordering property is independent of the other properties of flat
collections. You can make a given flat collection unordered or sorted regardless of
its other properties.

Access by Key
A given flat collection can have a key defined for its elements. A key is usually a
data member of the element, but it can also be calculated from the data members
of the element by some arbitrary function. Keys let you:

v Organize the elements in a collection

v Access a particular element in a collection

For collections that have a key defined, an equality relation must be defined for the
key type. Thus, a collection with a key is said to have key equality.

294 IOC Library User’s Guide

Equality Relation
The Collection Class Library provides sorted and unsorted versions of maps and
relations, for which both key and element equality must be defined. These
collections are similar to key set and key bag, except that they define functions
based on element equality, namely union and intersection. The add function
behaves differently for maps and relations than it does for key set and key bag
collections.

A flat collection can have an equality relation defined for its elements. The default
equality relation is based on the element as a whole, not just on one or more of its
data members (for example, the key). For two elements to be equal, all data
members of both elements must be equal. The equality relation is needed for
functions such as those that locate or remove a given element. A flat collection that
has an equality relation has element equality.

The ISet and ISortedSet collections check element uniqueness using the less-than
operator (operator<). However, you have to define the less-than operator so that it
compares all the major parts of an element according to the requirements of your
application. For example, suppose that you have an employee database. Each
element in this database is a structure that contains three fields: employee name,
employee serial number, and employee status report. To differentiate elements in
this database you would compare the fields employee name and employee serial
number, but you would not compare the employee status report field. Therefore for
this database you would define a less-than operator that would compare only the
employee name and the employee serial number fields.

Uniqueness of Entries
The terms unique and multiple relate to the key, in the case of collections with a
key. For collections with no key, unique and multiple relate to the element.

In some flat collections, such as map, key set, and set, no two elements are equal
or have equal keys. Such collections are called unique collections. Other
collections, including relation, key bag, bag, and heap, can have two equal
elements or elements with equal keys. Such collections are called multiple
collections.

For those multiple collections that have keys with element equality (relation and
sorted relation), elements are always unique while keys can occur multiple times. In
other words, if element equality is defined for a multiple collection with key, element
equality is tested before inserting a new element.

A unique collection with no keys and no element equality is not provided because a
containment function cannot be defined for such a collection. A containment function
determines whether a collection contains a given element.

The behavior during element insertion (when one of the add... methods is applied to
a collection) distinguishes unique and multiple collections. In unique collections, the
add function does not add an element that is equal to an element that is already in
the collection. In multiple collections, the add function adds elements regardless of
whether they are equal to any existing elements or not.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Types of Collections” on page 296
“Examples of Using the Collection Classes” on page 298

Chapter 8. Collection Classes Overview 295

“Instantiate the Collection Classes” on page 316

Types of Collections
There are two types of collections, categorized by their internal structures: flat
collections and trees.

Flat Collections
Flat collections have no hierarchy of elements or recursive structure. A flat collection
is like an array with added functionality. The following flat collections are provided
by the Collection Class Library:

v sets: key sets, sorted sets, key sorted sets

v bags: key bags, sorted bags, key sorted bags

v queues: priority queues

v deques

v heaps

v maps: sorted maps, relations, sorted relations

v sequences and equality sequences

v stacks

Combinations of Properties for Flat Collections
The figure below shows the flat collection that results from each combination of
properties. For example, Map appears in the Unique, Unordered column for the
Key, Element Equality row. This means that a map is unordered, each element is
unique, keys are defined, and element equality is defined. This implies that there
are no flat collections that have all of the following properties:

v The collection is ordered

v The collection is sequential

v The collection allows an element to appear more than once

v Keys are defined for elements in the collection

The rationale for not implementing collections with these combinations of properties
is that there is no reason to choose them over another collection that is already
available. For example, for an ordered collection that is sequential and offers
access by key, the key access would only have advantages if the elements are
stored in a position depending on their key. Because they are not, there is no flat
collection with key access that maintains a sequential order.

Unordered Ordered

Sorted Sequential

Unique Multiple Unique Multiple Multiple

Key*, Element
Equality

Map Relation Sorted map Sorted relation N/A

Key*, No
Element
Equality

Key set Key bag Key sorted set Key sorted bag N/A

No Key,
Element
Equality

Set Bag Sorted set Sorted bag
Equality

sequence

No Key, No
Element
Equality

N/A Heap N/A N/A Sequence

296 IOC Library User’s Guide

*Key equality must be defined.

For example, the default set collection:

v does not allow an item to be added if it is already present in the collection,
ensuring that elements are unique

v is not sorted

v cannot locate elements by key

Trees
Trees can be described either as structures whose elements have a hierarchy or as
a special form of recursive structure. Recursively a tree can be described as a node
(parent) with pointers to other nodes (children). Every node has a fixed number of
pointers, which are set to null at initialization time. Insertion of a new node involves
setting a pointer in the parent so that it points to the inserted child. The figure below
illustrates the structure of an n-ary tree.

One node is the entry point to the tree. This node is designated as the root. Nodes
without any pointers to other nodes are called leaf nodes or terminal nodes.

The Structure of N-ary Trees

Similarly, you can obtain tree-like or recursive structures by implementing the array
of children of a node as a flat collection of nodes. This will give you different
functionality for the children, for example, the ability to locate a child with a given
value.

Trees in general are more useful for searching elements than for adding and
deleting elements. For this reason, they are often called search trees. The
descriptions of AVL and B* trees explain why trees are well-suited for searching.
Generally, you can locate and insert elements in collections implemented as trees
faster than you can in collections implemented as lists. However, if you only want to
iterate through elements in a collection, it is faster to iterate through the elements of
a list.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Collection Characteristics” on page 294
“Examples of Using the Collection Classes” on page 298

Chapter 8. Collection Classes Overview 297

“Choose One of the Provided Implementation Variants” on page 314

Examples of Using the Collection Classes
Bag
An example of using a bag is a program for entering observations on species of
plants and animals found in a river. Each time you spot a plant or animal in the
river, you enter the name of the species into the collection. If you spot a species
twice during an observation period, the species is added twice, because a bag
supports multiple elements. You can locate the name of a species that you have
observed, and you can determine the number of observations of that species, but
you cannot sort the collection by species, because a bag is an unordered collection.
If you want to sort the elements of a bag, use a sorted bag instead.

Sorted Bag
An example of using a sorted bag is a program for entering observations on the
types of stones found in a riverbed. Each time you find a stone on the riverbed, you
enter the stone’s mineral type into the collection. You can enter the same mineral
type for several stones, because a sorted bag supports multiple elements. You can
search for stones of a particular mineral type, and you can determine the number of
observations of stones of that type. You can also display the contents of the
collection, sorted by mineral type, if you want a complete list of observations made
to date.

Key Bag
An example of using a key bag is a program that manages the distribution of
combination locks to members of a fitness club. The element key is the number that
is printed on the back of each combination lock. Each element also has data
members for the club member’s name, member number, and so on. When you join
the club, you are given one of the available combination locks, and your name,
member number, and the number on the combination lock are entered into the
collection. Because a given number on a combination lock may appear on several
locks, the program allows the same lock number to be added to the collection
multiple times. When you return a lock because you are leaving the club, the
program finds the elements whose key matches your lock’s serial number, and
deletes the matching element that has your name associated with it.

Key Sorted Bag
An example of using a key sorted bag is a program that maintains a list of families,
sorted by the number of family members in each family. The key is the number of
family members. You can add an element whose key is already in the collection
(because two families can have the same number of members), and you can
generate a list of families sorted by size. You cannot locate a family except by its
key, because a key sorted bag does not support element equality.

Heap and Stack
You can compare using a heap collection to managing the scrap metal entering a
scrap yard. Pieces of scrap are placed in the heap in an arbitrary location, and an
element can be added multiple times (for example, the rear left fender from a
particular kind of car). When a customer requests a certain amount of scrap,
elements are removed from the heap in an arbitrary order until the required amount
is reached. You cannot search for a specific piece of scrap except by examining
each piece of scrap in the heap and manually comparing it to the piece you are
looking for.

298 IOC Library User’s Guide

An example of using a stack is a program that keeps track of daily tasks that you
have begun to work on but that have been interrupted. When you are working on a
task and something else comes up that is more urgent, you enter a description of
the interrupted task and where you stopped it into your program, and the task is
pushed onto the stack. Whenever you complete a task, you ask the program for the
most recently saved task that was interrupted. This task is popped off the stack,
and you resume your work where you left off. When you attempt to pop an item off
the stack and no item is available, you have completed all your tasks.

Map
An example of using a map is a program that translates integer values between the
ranges of 0 and 20 to their written equivalents, from their written forms to their
numeric forms. Two maps are created, one with the integer values as keys, one
with the written equivalents as keys. You can enter a number, and that number is
used as a key to locate the written equivalent. You can enter a written equivalent of
a number, and that text is used as a key to locate the value. A given key always
matches only one element. You cannot add an element with a key of 1 or “one” if
that element is already present in the collection.

Sorted Map
An example of using a sorted map is a program that matches the names of rivers
and lakes to their coordinates on a topographical map. The river or lake name is
the key. You cannot add a lake or river to the collection if it is already present in the
collection. You can display a list of all lakes and rivers, sorted by their names, and
you can locate a given lake or river by its key, to determine its coordinates.

Queue
An example of using a queue is a program that processes requests for parts at the
cash sales desk of a warehouse. A request for a part is added to the queue when
the customer’s order is taken, and is removed from the queue when an order picker
receives the order form for the part. Using a queue collection in such an application
ensures that all orders for parts are processed on a first-come, first-served basis.

Deque
An example of using a deque is a program for managing a lettuce warehouse.
Cases of lettuce arriving into the warehouse are registered at one end of the queue
(the “fresh” end) by the receiving department. The shipping department reads the
other end of the queue (the “old” end) to determine which case of lettuce to ship
next. However, if an order comes in for very fresh lettuce, which is sold at a
premium, the shipping department reads the “fresh” end of the queue to select the
freshest case of lettuce available.

Priority Queue
An example of a priority queue is a program used to assign priorities to service
calls in a heating repair firm. When a customer calls with a problem, a record with
that person’s name and the seriousness of the situation is placed in a priority
queue. When a service person becomes available, customers are chosen by the
program beginning with those whose situation is most severe. In this example, a
serious problem such as a nonfunctioning furnace would be indicated by a low
value for the priority, and a minor problem such as a noisy radiator would be
indicated by a high value for the priority.

Relation
An example of using a relation is a program that maintains a list of all your
relatives, with an individual’s relationship to you as the key. You can add an aunt,
uncle, grandmother, daughter, father-in-law, and so on. You can add an aunt even if

Chapter 8. Collection Classes Overview 299

an aunt is already in the collection, because you can have several relatives who
have the same relationship to you. (For unique relationships such as mother or
father, your program would have to check the collection to make sure it did not
already contain a family member with that key, before adding the family member.)
You can locate a member of the family, but the family members are not in any
particular order.

Sorted Relation
An example of using a sorted relation is a program used by telephone operators to
provide directory assistance. The computerized directory is a sorted relation whose
key is the name of the individual or business associated with a telephone number.
When a caller requests the number of a given person or company, the operator
enters the name of that person or company to access the phone number. The
collection can have multiple identical keys, because two individuals or companies
might have the same name. The collection is sorted alphabetically, because once a
year it is used as the source material for a printed telephone directory.

Sorted Set
An example of using a sorted set is a program that tests numbers to see if they are
prime. Two complementary sorted sets are used, one for prime numbers, and one
for nonprime numbers. When you enter a number, the program first looks in the set
of nonprime numbers. If the value is found there, the number is nonprime. If the
value is not found there, the program looks in the set of prime numbers. If the value
is found there, the number is prime. Otherwise the program determines whether the
number is prime or nonprime, and places it in the appropriate sorted set. The
program can also display a list of prime or nonprime numbers, beginning at the first
prime or nonprime following a given value, because the numbers in a sorted set are
sorted from smallest to largest.

Key Set
An example of using a key set is a program that allocates rooms to patrons
checking into a hotel. The room number serves as the element’s key, and the
patron’s name is a data member of the element. When you check in at the front
desk, the clerk pulls a room key from the board, and enters that key’s number and
your name into the collection. When you return the key at check-out time, the
record for that key is removed from the collection. You cannot add an element to
the collection that is already present, because there is only one key for each room.

Key Sorted Set
An example of using a key sorted set is a program that keeps track of canceled
credit card numbers and the individuals to whom they are issued. Each card
number occurs only once, and the collection is sorted by card number. When a
merchant enters a customer’s card number into a point-of-sale terminal, the
collection is checked to see if that card number is listed in the collection of canceled
cards.

Sequence
An example of a sequence is a program that maintains a list of the words in a
paragraph. The order of the words is obviously important, and you can add or
remove words at a given position, but you cannot search for individual words except
by iterating through the collection and comparing each word to the word you are
searching for. You can add a word that is already present in the sequence, because
a given word may be used more than once in a paragraph.

Equality Sequence
An example of using an equality sequence is a program that calculates, and places

300 IOC Library User’s Guide

in a collection, members of the Fibonacci series, which is a series of integers in
which each integer is equal to the sum of the two preceding integers. Multiple
elements of the same value are allowed. For example, the sequence begins with
two instances of the value 1. Element equality allows you to search for a given
element, for example 8, and find out what element follows it in the sequence.

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296

“Instantiate the Collection Classes” on page 316

Hierarchy and Design of the Collection Classes
Collection Class Hierarchy
The classes in the Collection Classes are all related through the hierarchy of
abstract classes shown in the figures below:

Chapter 8. Collection Classes Overview 301

Overall Implementation Structure
The abstract collection classes represent a concept, and classes derived from it
represent implementations of the concept. You cannot create any objects from the
abstract classes. The names of the abstract collection classes start with the letters
IA.

Three abstract collection classes inherit directly from IACollection, the abstract class
that defines the base interfaces for the collection classes:

Abstract Class Description

IAEqualityCollection Defines the interfaces for
the property of element equality (whether
equality is defined for the element).

IAKeyCollection Defines the interfaces for the key property
(whether you use part of an element (a key)
to access an element in the collection).

IAOrderedCollection Defines the interfaces for
the property of ordered elements (whether a
next or previous relationship exists between
elements).

Two abstract collection classes inherit from IAOrderedCollection:

Abstract Class Description

IASortedCollection Defines the interfaces for ordered collections
that are sorted.

302 IOC Library User’s Guide

Abstract Class Description

IASequentialCollection Defines the interfaces for ordered collections
that are not sorted.

More abstract collection classes are derived by inheriting from a combination of the
above abstract classes. Concrete classes have the properties of the abstract
classes that they inherit from:

Abstract Classes Derived Abstract Class Derived Concrete Classes

IAEqualityCollection ISet
IBag

IAKeyCollection IKeyBag
IKeySet

IASequentialCollection ISequence

IAEqualityCollection
IASequentialCollection

IEqualitySequence

IAEqualityCollection
IAKeyCollection

IAEqualityKeyCollection IMap
IRelation

IAEqualityCollection
IASortedCollection

IAEqualitySortedCollection ISortedBag
ISortedSet

IAKeyCollection
IASortedCollection

IAKeySortedCollection IKeySortedBag
IKeySortedSet

IAEqualityCollection
IAKeyCollection
IASortedCollection

IAEqualityKeySortedCollection ISortedMap
ISortedRelation

The IARestrictedAccessCollection abstract class defines defines the interfaces for
the restricted access collections. Restricted access collections let you use only a
subset of functions of an existing collection. The IBM Open Class provides you with
the following collections with restricted access:

v IStack, IDeque, and IQueue, which are all based on ISequence

v IPriorityQueue, which is based on IKeySortedBag

Each abstract collection type has several possible implementations. Some of these
implementations are basic; that is, the collection class is implemented directly as a
concrete class. These basic implementations include the following:

v AVL trees

v Hash tables

v Linked sequences

v Tabular sequences

Variant implementations of the same collection behave externally in the same way
but may offer improved performance for a particular application, depending on the
collection’s characteristics. Sets can be implemented, for example, as AVL trees,
lists, or hash tables.

Default implementations are provided for every collection. Two default classes are
provided for each abstract data type: a class that is instantiated only with the
element type (and possibly the key type) and one that is instantiated by passing in
element-specific functions. In many cases, you do not need to concern yourself with
the choice of implementation. If you choose not to specify one, the Collection
Classes will use a reasonable default implementation class.

Chapter 8. Collection Classes Overview 303

For example, the class ISet uses an AVL tree as the default implementation. The
other implementation variants are linked list and diluted table. The three
implementation variants ISetAsAvlTree (a set implemented as an AVL tree),
ISetAsList (a set implemented as a linked list), and ISetAsDilTable (a set
implemented as a diluted table) are subclasses of IASet. If you do not want to deal
with implementation variants, you can just use the default class ISet.

With abstract classes, you can program to a more generalized interface without
knowing what specific collection type your code will operate on. Implementation
details can be left for later. For example, when working with a set, you can write
your program to use the interfaces of the abstract classes IASet or
IAEqualityCollection, rather than the concrete classes ISet, IGSet, ISetAsBstTree,
and so on.

The Based-On Concept
The Collection Classes achieve a high degree of implementation flexibility by basing
several collection class implementations on other abstract classes, rather than by
implementing them directly through a concrete implementation variant of the class.
This design feature results in an implementation path rather than the selection of an
implementation in a single step. The Collection Classes contain type definitions for
the most common implementation paths.

The element functions that are needed by a particular implementation depend on all
collection class templates that participate in the implementation. For example, while
ISet requires at least element equality to be defined, an AVL tree implementation of
this set also requires the element type to provide a comparison function. A hash
table implementation also requires the element type to have a hash function. The
required element functions for all predefined implementation variants are listed for
individual collection types.

For a concrete implementation, such as a set based on a key-sorted set that is in
turn based on a tabular sequence, these class templates are plugged together so
that the elements only need to define the operations that are needed for the specific
type of collection being used.

Element Functions and Key-Type Functions
The member functions of the Collection Classes call other functions to manipulate
elements and keys. These functions are called element functions and key-type
functions, respectively. Member functions of the Collection Classes may, for
example, use the element’s assignment or copy constructors for adding an element,
or they may use the element’s equality operator for locating an element in the
collection.

Collection Class Polymorphism
Polymorphic use of collections differs from polymorphism of the element type.
Polymorphic use of collections means that a function can specify an abstract
collection type for its argument, for example IACollection, and then accept any
concrete collection given as its actual argument. Element polymorphism means that
you can use the collections with any elements that provide basic operations like
assignment and equality. This section deals with the polymorphic use of collections
rather than elements.

Each abstract class is defined by its functions and their behavior. The most abstract
view of a collection is a container without any ordering or any specific element or
key properties. Elements can be added to a collection, and a collection can be

304 IOC Library User’s Guide

iterated over. A polymorphic function on collections that uses only properties of the
most abstract view might be to print all elements.

Collections with more specialized element properties, such as equality or key
equality, also provide functions for retrieving element occurrences by a given
element or key value. Ordered collections provide the notion of a well-defined
ordering of element occurrences, either by an element ordering relation or by
explicit positioning of elements within a sequence. Ordered collections define
operations for positional element access. Sorted collections provide no further
functions, but define a more specific behavior, namely that the elements or their
keys are sorted.

The properties represented by abstract collection classes are combined through
multiple inheritance. For example, the abstract collection class
IAEqualitySortedCollection, for example, combines the properties of element
equality and element sorting, which implies being ordered. If a polymorphic function
uses IAEqualitySortedCollection as its argument type, the argument will be sorted,
and the function can use functions such as contains that are only defined for
collections with element equality.

Default and Variant Implementations
Each collection provides a default implementation. You can easily replace the
default implementation of a collection by an implementation variant of the same
collection that behaves externally in the same way but may offer improved
performance for your application.

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296
“Class Template Naming Conventions”

“Instantiate the Collection Classes” on page 316
“Implement Element- and Key-Type Functionality” on page 323

Class Template Naming Conventions
All class templates begin with an uppercase I. The table below shows the naming
conventions used to distinguish between different types of class templates, given a
default class template of ISet:

Class name Meaning of letters

ISet Default class template.

ISetImpl Typeless implementation class.

ICSetImpl Typeless implementation class that implements additional checks.

IGSet Default generic class template. The element operations class can
be specified as template argument.

IASet Abstract class template.

IVSet Default notification-enabled class.

Chapter 8. Collection Classes Overview 305

Class name Meaning of letters

ISetAsAvlTree
ISetAsBstTree
ISetAsList
ISetAsDilTable
ISetAsHshTable
ISetAsTable

Variant class templates.

IGSetAsBstTree
IGSetAsList
IGSetAsDilTable
IGSetAsHshTable
IGSetAsTable

Variant generic class templates.

IVSetAsAvlTree
IVSetAsDilTable
IVSetAsHshTable
IVSetAsTable
IVSetAsList
IVSetAsBstTree

Variant notification-enabled classes.

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296
“Possible Implementation Paths” on page 312

“Choose One of the Provided Implementation Variants” on page 314

Implementation Variants

AVL Tree
AVL trees are a special form of binary tree. You can better understand AVL trees if
you know how a binary tree is structured.

Trees are binary trees when all nodes have either zero, one, or two children. Binary
trees are often used in applications where you want to store elements in a certain
order. In such cases, the left child always points to an element that comes earlier in
the order than the parent node, and the right child points to an element that comes
later than the parent. A search through a binary tree begins at the root node. The
search then continues downward until the desired element is found, by determining
whether a node comes before or after the searched-for node, and then following the
appropriate branch. For example, the binary tree shown in the figure below has
elements added in the following sequence: 8 - 10 - 5 - 1 - 9 - 6 - 11. A search for
element 9 begins at the root node (element 8). Assuming that the element value
defines the ordering relation, the search would take the right node from element 8
(because 9 is greater than 8) and would arrive at element 10. The search would
take the left node from element 10 (because 9 is smaller than 10) and would arrive
at element 9, the desired element.

The following figures show you a binary search tree and an unbalanced binary
search tree.

306 IOC Library User’s Guide

Balanced Binary Search Tree Unbalanced Binary Search Tree

One drawback of a binary search tree is that the tree can easily become
unbalanced. The figure shows how unbalanced the tree becomes when the
elements 12 through 15 are added. The unbalanced binary tree looks almost like a
list, without the performance advantage of a normal binary search tree. To obtain
this performance advantage, a binary search tree should always remain balanced.
The AVL Tree is a special form of binary search tree that maintains balance.

AVL trees are useful for collections containing a large number of small elements. An
AVL tree implementation is even suitable for adding and deleting, because the
performance overhead for the rebalancing that sometimes occurs when an element
is added or deleted is still less expensive than searching through the elements of a
sequence to find the position at which to add or delete an element.

If you use a set collection and do not choose an implementation variant, you are
automatically using an AVL tree. If you use a set and are not aware that the set is
implemented as an AVL tree, you may be surprised that a set requires an ordering
relation, when a set is an unordered collection. The reason a set requires an
ordering relation is that an AVL tree requires an ordering relation to determine
where to add new elements or where to find elements to be accessed or deleted.
As this example shows, required element and key-type functions are determined by
two factors:

v Some functions are required because of the properties of the collection.

v Some properties are required because of the implementation variant you choose.

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296
“Possible Implementation Paths” on page 312
“Class Template Naming Conventions” on page 305
“B* Tree” on page 308
“Diluted Table” on page 309
“Hash Table” on page 310
“List” on page 311
“Table” on page 312

“Choose One of the Provided Implementation Variants” on page 314
“Instantiate the Collection Classes” on page 316

Chapter 8. Collection Classes Overview 307

B* Tree
A B* tree is a search tree that may have more than two references per node.The
figure below shows a B* tree with up to five children per node:

A B* tree combines the advantages of binary search and sequential access upon
the same set of keys. B* trees are based on two simple ideas:

v The internal nodes are used only for storing the keys, with all real data stored at
the leaves. A B* tree takes into consideration the page or block size of the
operating system’s virtual memory structure, and is suitable for applications
where paging or memory thrashing is a constraint.

v The leaves of a B* tree are chained together in logical sequence to support
sequential access.

A B* tree implementation variant is suitable when you have many large elements
that are accessed by key. Because keys and their data are separated, the keys in
the tree structure are used for a quick search and the pointers are used for quick
access to the data.

In contrast to a B* tree, keys and data in an AVL tree are both stored in the nodes.
This means that searching through elements could cause page faults if the
elements are large, because the various keys may be spread across several pages
along with the data they refer to.

In the figure below, the B* tree has an order of 5 (which means that each internal
node has a maximum of five references):

The data is stored only in the leaves. A leaf block is built to hold one element. A leaf
block may be larger than one page. The B* tree implementation uses the keys in
the nodes for quick access to a required page (leaf), or it uses the keys for a quick
sequential access to all pages, and hence to all elements.

308 IOC Library User’s Guide

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296
“Possible Implementation Paths” on page 312
“Class Template Naming Conventions” on page 305
“AVL Tree” on page 306
“Diluted Table”
“Hash Table” on page 310
“List” on page 311
“Table” on page 312

“Choose One of the Provided Implementation Variants” on page 314
“Instantiate the Collection Classes” on page 316

Diluted Table
A diluted table, like a table sequence, is an array implementation of a list. However,
when you delete an element from a diluted table, it is not actually deleted, but only
flagged as deleted. This provides a performance advantage, in that elements
following a deleted element do not need to be shifted. The additional overhead of
using a dilution flag is trivial.

If you want to add a new element at a certain position, only those elements
between that position and the next element flagged as deleted need to be shifted.
(If no elements later in the list are flagged as deleted, then all elements beyond the
insertion position must be shifted.)

Use a diluted table rather than a table if your application will be doing much adding
or deleting of elements after the collection is established.

The figure below shows a diluted table implementation variant.

Diluted Table Implementation Variant

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296
“Possible Implementation Paths” on page 312
“Class Template Naming Conventions” on page 305
“AVL Tree” on page 306
“B* Tree” on page 308
“Hash Table” on page 310
“List” on page 311
“Table” on page 312

“Choose One of the Provided Implementation Variants” on page 314
“Instantiate the Collection Classes” on page 316

Chapter 8. Collection Classes Overview 309

Hash Table
Hashing is another important and widely used technique for implementing
collections. Conceptually, hashing involves calculating an index from the key or
other parts of an element, and then using that index to look for matches in a hash
table. The function that calculates the index is called a hash function.

A hash-table implementation variant is suitable for nearly all applications with a
balanced mix of operations. Such an implementation is quick for retrieving
elements. It can also add and delete elements quickly, because, unlike an AVL tree,
it does not need to be rebalanced. The efficiency of a hash-table implementation is
largely dependent on the hash function implementation.

You cannot use a hash-table implementation variant when you require your
elements to appear in main storage in sorted order (where elements earlier in the
sorting order have lower addresses than elements later in the sorting order). On the
other hand, you must use a hash table if you have a complex key (one composed,
for example, of several attributes of an element), and either you cannot find a
reasonable way to compare keys, or the comparison would be expensive.

For collections that do not provide access by key, but that support a hash-table
implementation variant, the complete element is used as the input to the hash
function.

Hashing, as implemented in the collection classes, allows elements to be stored in
a potentially unlimited space, and therefore imposes no limit on the size of the
collection. The figure below shows a hash-table implementation variant.

Hash-Table Implementation Variant

The hash function that calculates the index 3 from abcd is implemented as follows:

1. Each character is transformed into an integer according to its position in the
alphabet.

2. The resulting integers are added together.

3. The result is divided by the hash table size. The remainder is the hash.

The principal behind a hash table is that the possibly infinite set of elements in your
collection is partitioned into a finite number of hash values (1, 2, 3, ...). Your hash
function is called with a key and a modulo value, and you use the key and the
modulo value to arrive at an integer hash value. If for two different keys the hash
function returns the same hash value (as for xyz and yyy in the previous figure), a
hash collision occurs. In such cases, a hash implementation constructs a collision
list where all keys returning the same hash value are linked.

310 IOC Library User’s Guide

In the best case, for each different key, your hash function should return a different
hash value. At the very least, it is desirable for the collision lists to remain small so
that access time is fast. This means that hash values should be evenly distributed.
Your hash function should randomly hash the key so that the hash value is not
dependent on the key value in any trivial way. Your hash function should always
return the same hash value for a given key and modulo provided to it.

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296
“Possible Implementation Paths” on page 312
“Class Template Naming Conventions” on page 305
“AVL Tree” on page 306
“B* Tree” on page 308
“Diluted Table” on page 309
“List”
“Table” on page 312

“Choose One of the Provided Implementation Variants” on page 314
“Instantiate the Collection Classes” on page 316

List
A list uses pointers to link each element to its predecessor and successor. This
implementation does not require contiguous memory for storing an array, which
means that elements do not have to be shifted to make room for new elements or
to close up gaps created by deleted elements.

Because storage is dynamically allocated and freed, this implementation variant is a
good choice in applications that add or delete many elements, particularly where
you cannot predict the amount of storage required. The figure below shows a list
implementation variant.

List Implementation Variant

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296
“Possible Implementation Paths” on page 312
“Class Template Naming Conventions” on page 305
“AVL Tree” on page 306
“B* Tree” on page 308
“Diluted Table” on page 309
“Hash Table” on page 310
“Table” on page 312

“Choose One of the Provided Implementation Variants” on page 314
“Instantiate the Collection Classes” on page 316

Chapter 8. Collection Classes Overview 311

Table
A table is an array implementation of a sequence. The elements are stored in
contiguous cells of an array. In this representation, a list can easily be traversed,
and new elements can easily be added to the tail of the list. If an element needs to
be inserted into the middle of the list, however, all following elements need to be
shifted to make room for the new element. Similarly, if an element needs to be
removed from the list, and the element is not the last element in the list, all
elements following the element to be deleted must be shifted in to close up the gap.

A table can access all elements quickly because all elements can be stored in a
single storage block. If all of the following conditions hold true for your use of a
collection, a table is a suitable implementation variant to use:

v The elements to be stored are small.

v You can predict with some accuracy how many elements your application will
have to handle.

v Few or no elements will need to be added or deleted once the collection is first
created.

Note that memory is statically allocated for tables, at the beginning of your program.

The figure below shows a table implementation variant.

Table Implementation Variant

“Chapter 8. Collection Classes Overview” on page 293
“Types of Collections” on page 296
“Possible Implementation Paths”
“Class Template Naming Conventions” on page 305
“AVL Tree” on page 306
“B* Tree” on page 308
“Diluted Table” on page 309
“Hash Table” on page 310
“List” on page 311

“Choose One of the Provided Implementation Variants” on page 314
“Instantiate the Collection Classes” on page 316

Possible Implementation Paths
The figure below lists the basic and based-on implementations provided by the
Collection Classes. The upper left corner of each cell contains the name of the
(abstract) collection class; basic implementations are written in smaller letters in
bold face, while based-on implementations are described by arrows starting from
the class that they implement and ending in the (abstract) class on which they are
based. An implementation choice for a given class must use either a basic
implementation for this class or follow a based-on implementation path that
ultimately leads to a basic implementation.

312 IOC Library User’s Guide

Take the example of the Set abstraction. The Set is not implemented directly. (You
can tell this from the figure because no implementation variant name appears in
bold in the box containing Set.) To determine the possible implementation variants
for Set, follow the arrows out of the Set box:

v One arrow leads to the KeySet box. The KeySet box contains an implementation
variant, Hash Table, so this is one possibility. An arrow also points from the
KeySet Box to the KeySortedSet box, which allows the following possibilities:

– AVL Tree (appears in KeySortedSet box)

– B* Tree (appears in KeySortedSet box)

– An arrow leads from KeySortedSet to Sequence, which contains the following
implementation variants:

- List

- Table

- Diluted Table

A Set can therefore be implemented using any of the six implementation variants
cited in bold face above.

The following tables describes the Implementation variants provided for each flat
collection. The letter “D” identifies the default implementations; “I” identifies
implementation variants. If the space is blank, the feature is not supported.

Implementation
Variant Bag Sorted Bag Key Bag Key Sorted Bag

AVL Tree

B* Tree

Hash Table I D

List D D I D

Table I I I I

Diluted Table I I I I

Implementation
Variant Set Sorted Set Key Set Key Sorted Set

AVL Tree D D D D

B* Tree I I I I

Hash Table I I

List I I I I

Table I I I I

Chapter 8. Collection Classes Overview 313

Implementation
Variant Set Sorted Set Key Set Key Sorted Set

Diluted Table I I I I

Implementation
Variant Map Sorted Map Relation Sorted Relation

AVL Tree D D

B* Tree I I

Hash Table I D

List I I I D

Table I I I I

Diluted Table I I I I

Implementation
Variant Sequence Equality Sequence Heap

AVL Tree

B* Tree

Hash Table

List D D D

Table I I I

Diluted Table I I I

“Chapter 8. Collection Classes Overview” on page 293
“Examples of Using the Collection Classes” on page 298

“Choose One of the Provided Implementation Variants”

Choose One of the Provided Implementation Variants
When you are developing a program that uses a collection, you should begin by
using the default implementation and go on to a final tuning phase where you
choose implementations according to the actual requirements of your application.
You can determine these requirements by profiling or by using other measurement
tools. You need to choose between a variety of implementations provided by the
Collection Classes as well as how to create your own implementation classes.

The collection implementations can be based on other collection classes. The
based-on concept provides a systematic framework for choosing the most
appropriate implementations. It is also useful for extending the Collection Classes
with other basic implementations, such as specific kinds of search trees, and for
using these implementations as the basis for other data abstractions such as sets,
maps, and bags.

You can implement a given collection type (bag, key sorted set, etc.) in a number of
different ways. The Collection Classes provide multiple implementation variants for
collections because different variants have different performance and storage use
characteristics. After you have coded and debugged an application that uses the

314 IOC Library User’s Guide

Collection Classes, you can change an implementation to a variant that is
well-suited to the ways in which you use the collection. For example, six
implementation variants are listed for key set, including the default key set. These
variants are implemented using the following concrete techniques:

v Sequences

– List

– Table

– Diluted table

v Trees

– AVL tree (the technique used for the default key set)

– B* tree

v Hash table

As it turns out, the implementation variants for key set encompass all the concrete
techniques used by the Collection Classes. Other collections may only use some of
the techniques in the list above. If you want to choose the best implementation
variant for your program, you need to know the advantages of each concrete
technique.

“Chapter 8. Collection Classes Overview” on page 293
“Possible Implementation Paths” on page 312
“Class Template Naming Conventions” on page 305
“Types of Collections” on page 296
“AVL Tree” on page 306
“B* Tree” on page 308
“Diluted Table” on page 309
“Hash Table” on page 310
“List” on page 311
“Table” on page 312

“Instantiate the Collection Classes” on page 316

Replace the Default Implementation
By using typedefs to define the collection classes you use, you can easily replace
the default implementation with another implementation. Suppose that you have a
key set class called MyType that has been defined with the default implementation
IKeySet. The definition of this class would look like this:
typedef IKeySet<Element, Key> MyType;

If you want to replace the default implementation, which uses an AVL tree, with a
hash table implementation, you can replace the above implementation with the
following definition:
typedef IHashKeySet<Element, Key> MyType;

If you replace a collection’s default implementation with one of its implementation
variants, you must determine what element functions and key-type functions need
to be provided for the variant. You must then provide those functions. The list of
required functions is not always the same for a collection’s default implementation
as for particular implementation variants.

Chapter 8. Collection Classes Overview 315

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Types of Collections” on page 296
“Possible Implementation Paths” on page 312

“Copy and Reference Collections” on page 323

Instantiate the Collection Classes
To use a collection class, you normally follow these three steps:

1. Instantiate a collection class template and provide arguments for the formal
template arguments.

2. Define one or more objects of this instantiated class, possibly providing
constructor arguments.

3. Apply functions to these objects.

The following example describes instantiation for the default implementation.
Consider the following example header file for a class Person:
//person.h - Header file containing class Person
#include <iostream.h>
#include <istring.hpp>

class Person
{

IString PersonName;
IString TNumber;

public:
//constructor
Person () : PersonName(“”), TNumber(“”) {}

//copy constructor
Person(IString Name, IString Number)

: PersonName(Name), TNumber(Number)
{
}

IString const& GetPersonName() const { return PersonName; }
IString const& GetTNumber() const { return TNumber; }
bool operator==(Person const& A) const
{

return (PersonName == A.GetPersonName())
&& (TNumber==A.GetTNumber());

}

bool operator<(Person const& A) const
{

return (PersonName < A.GetPersonName());
}

};

For a given class, such as ISet, and a given element type, such as a class named
Person, the instantiation for a new class that represents sets of persons could look
like this:
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous example

316 IOC Library User’s Guide

typedef ISet<Person> AddressList;

int main(int argc, char *argv[])
{

AddressList Business;
Person A(“Sarah Vandewater”, “90210”);
Business.add(A);
cout << “\nThe set now contains ”

<< Business.numberOfElements() <<“ entries!\n”;
return 0;

}

Once the AddressList collection is defined, you can define AddressList objects
Family, Business, and Sportclub as follows:

AddressList Family, Business, Sportclub;

You can also define the objects without introducing a new type name (AddressList):
ISet<Person> Family, Business, Sportclub;

However, you should begin by explicitly defining a named class, such as
AddressList, that uses the default implementation. It is then easier to replace the
default implementation with a better implementation later on.

“Chapter 8. Collection Classes Overview” on page 293

Implement Bounded Collections
In the current implementation of the Collection Classes, all collections are
unbounded. The concept of bounded collections is supported so that you can create
your own bounded collection implementations.

Since there are no bounded collections in the Collection Classes, the functions
isBounded() and isFull() always return false for all IBM Open Class collections.

A bounded collection limits the number of elements it can contain. When a bounded
collection contains the maximum number of elements (its bound), the collection is
said to be full. This condition can be tested by the function isFull. If elements are
added to a full collection, the exception IFullException is thrown. This behavior is
useful for collections that are to have their storage allocated completely on the
runtime stack.

You can determine the maximum number of elements in a bounded collection by
calling the function maxNumberOfElements(). You can only call the
maxNumberOfElements() function on bounded collections, otherwise the
INotBounded Exception exception is thrown.

“Chapter 8. Collection Classes Overview” on page 293
“Collection Class Library Exceptions” on page 356

“Instantiate the Collection Classes” on page 316

Chapter 8. Collection Classes Overview 317

Addition, Removal, and Replacement of Elements
Adding Elements
The add function places the element identified by its argument into the collection. It
has two general properties:

v All elements that are contained in the collection before an element is added are
still contained in the collection after the element is added.

v The element that is added will be contained in the collection after it is added.

Operations that contradict these properties are not valid. You cannot add an
element to a map or sorted map that has the same key as an element that is
already contained in the collection, but is not equal to this element (as a whole). In
the case of a map and sorted map, an exception is thrown. Note that both map and
sorted map are unique collections. The functions locateOrAddElementWithKey and
addOrReplaceElementWithKey specify what happens if you try to add an element to
a collection that already contains an element with the same key.

The figure below shows the result of adding a series of four elements to a map, a
relation, a key set, and a key bag. The elements are pairs of a character and an
integer. The character in the pair is the key. An element equality relation, if defined,
holds between two elements if both the character and the integer in each pair are
equal. The first row shows what each collection looks like after the element <a,1>
has been added to each collection. Each following row shows what the collections
look like after the element in the leftmost column is added to each.

Behavior of add for Unique and Multiple Collections

add Map or sorted
map

Relation or
sorted relation

Key set or key
sorted set

Key bag or key
sorted bag

<a,1> <a,1> <a,1> <a,1> <a,1>

<b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>

<a,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1> <a,1>, <b,1>,
<a,1>

<a,2> exception: Key
Already Exists

<a,1>, <b,1>,
<a,2>

<a,1>, <b,1> <a,1>, <b,1>,
<a,1>, <a,2>

The add function behaves differently depending on the properties of the collection:

v In unique collections, an element is not added if it is already contained in the
collection.

v In sorted collections, an element is added according to the ordering relation of
the collection.

v In sequential collections, an element is added to the end of the collection.

For sequential collections, elements can be added at a given position using add
functions other than add, such as addAtPosition, addAsFirst, and addAsNext.
Elements after and including the given position are shifted. Positions can be
specified by a number, with 1 for the first element, by using the addAtPosition
function. Positions can also be specified relative to another element by using the
addAsNext or addAsPrevious functions, or relative to the collection as a whole by
using the addAsFirst or addAsLast functions.

Removing Elements
In the Collection Classes, you can remove an element that is pointed to by a given

318 IOC Library User’s Guide

cursor by using the removeAt function. All other removal functions operate on the
model of first generating a cursor that refers to the desired position and then
removing the element to which the cursor refers. There is an important difference
between element values and element occurrences. An element value may, for
non-unique collections, occur more than once. The basic remove function always
removes only one occurrence of an element.

For collections with key equality or element equality, removal functions remove one
or all occurrences of a given key or element. These functions include remove,
removeElementWithKey, removeAllOccurrences, and removeAllElementsWithKey.
Ordered collections provide functions for removing an element at a given numbered
position. Ordered collections also allow you to remove the first or last element of a
collection using the removeFirst or removeLast functions.

After you have removed one element with the property, the entire collection would
have to be searched for the next element with the property. Because all cursors of
the collection become undefined when elements are removed, removing all
elements with a given property from a collection cannot be done efficiently using
cursors. If you want to remove all of the elements in a collection that have a given
property, you should use the function removeAll and provide a predicate function as
its argument. This predicate function has an element as argument and returns a
value of type bool. The bool result tells whether the element is to be removed.

Sometimes you may want to pass more information to the predicate function. You
can use an additional argument of type void*. The pointer then can be used to
access a structure containing further information.

Replacing Elements
It is possible to modify collections by replacing the value of an element occurrence.
Adding and removing elements usually changes the internal structure of the
collection. Replacing an element leaves the internal structure unchanged. If an
element of a collection is replaced, the cursors in the collection do not become
undefined.

For collections that are organized according to element properties, such as an
ordering relation or a hash function, the replace function must not change this
element property. For key collections, the new key must be equal to the key that is
replaced. For non-key collections with element equality, the new element must be
equal to the old element as defined by the element equality relation. The key or
element value that must be preserved is called the positioning property of the
element in the given collection type.

Sequential collections and heaps do not have a positioning property. Element
values in sequences and heaps can be changed freely. Replacing element values
involves copying the whole value. If only a small part of the element is to be
changed, it is more efficient to use the elementAt access function . The replaceAt
function checks whether the replacing element has the same positioning property as
the replaced element. (See Collection Class Library Exceptions for more details on
preconditions.) When you use the elementAt function to replace part of the element
value, this check is not performed. If you want to ensure safe replacement (a
replacement that does not change the positioning property), use replaceAt rather
than elementAt.

“Chapter 8. Collection Classes Overview” on page 293

Chapter 8. Collection Classes Overview 319

“Types of Collections” on page 296
“Collection Class Library Exceptions” on page 356

“Instantiate the Collection Classes” on page 316
“Add an Element to a Collection”
“Remove an Element from a Collection”

Add an Element to a Collection
To add an element to a collection, call the add function. Consider the following
example:
// main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples

typedef ISet<Person> AddressList;

int main(int argc, char *argv[])
{

AddressList Business;
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“214-660012”);
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(A); //Person A is added for the second time
cout << “\nThe set now contains ” << Business.numberOfElements()

<<“ entries!\n”;
return 0;

}

If you run the program, the set will only contain 3 different entries. In a set, each
element is unique. No two elements can be the same. To illustrate the difference
between sets and bags, run the program using a bag rather than a set.

“Chapter 8. Collection Classes Overview” on page 293
“Addition, Removal, and Replacement of Elements” on page 318

“Remove an Element from a Collection”

Remove an Element from a Collection
Consider the following example:
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples

typedef ISet <Person> AddressList;

bool noPhone(Person const& P,void*) //predicate function
{

return P.GetTNumber()==“x”;
}

int main(int argc, char *argv[])

320 IOC Library User’s Guide

{
AddressList business;
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);

business.add(A);
business.add(B);
business.add(C);
business.add(D);
business.add(A); //Person A is added for the second time

cout << “\nThe set now contains ” << business.numberOfElements()
<<“ entries!\n”;

business.removeAll(noPhone); //Person B is removed from the set
cout << “\nThe set now contains ” << business.numberOfElements()

<<“ entries!\n”;
return 0;

}

If you run the program, the set will only contain 2 elements as a result of the the
remove function. Try modifying the program so that all persons with a telephone
number are removed when the program is run.

“Chapter 8. Collection Classes Overview” on page 293
“Addition, Removal, and Replacement of Elements” on page 318

“Add an Element to a Collection” on page 320

Add and Overload Member Functions
Typically you will not derive from any of the Collection Classes. When you must
derive classes from the Collection Classes be aware of the following:

1. The derived class only adds new member functions

2. The derived class overloads existing member functions. The derived collection
class will not be used in polymorphic way.

Collection classes do not have virtual functions. You cannot override the member
functions of a collection class.

For example, suppose you want to implement a set of integers that can give you
information about the sum of integers contained in the collection. You create a class
IntSet that is derived from ISet<int>. This class does the following:

1. Introduces the data member ivSum to hold the current sum.

2. Adds the member function sum, which returns the current sum.

3. Overloads the add member function so that it updates ivSum each time an
integer is added to the collection.

In a real application, any add, replace or remove member function would have to be
overloaded in order to update the sum of integers. For simplicity, this is not done in
the example below:
#include <iset.h>

class IntSet: public ISet<int> {
typedef ISet<int> Inherited;

Chapter 8. Collection Classes Overview 321

public:
IntSet(INumber n = 100)

: ISet<int> (n), ivSum (0)
{
}

bool add(int const& i)
{

ivSum += i;
return Inherited::add(i);

}

int sum() const
{

return ivSum;
}

private:
int ivSum;

};

//...

IntSet anIntSet;
anIntSet.add(1);
anIntSet.add(2);
cout << anIntSet.sum () << endl;

The output of this program is 3.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Example: Abstract Class Hierarchy”

Example: Abstract Class Hierarchy
The following example defines a universal printer class that accepts an arbitrary
collection of jobs and prints their IDs. The elements are printed in the iteration order
that is defined for the given collection. The key set running can be used as
argument to the universal printer.
class JobPrinter {
public:

print (IACollection <Job*> const& jobs)
{

cout << “ID ...”
ICursor *cursor = jobs.newCursor ();
cout << “{ ”;
forICursor (*cursor) {

cout << jobs.elementAt (*cursor)->id() &l2. ' ';
}
cout << “}\n”;
delete cursor;

}
};

// ...
typedef IKeySet <Job*, JobId> JobSet;

322 IOC Library User’s Guide

JobSet running;
// ...
JobPrinter jobPrinter;
jobPrinter.print(running);

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Copy and Reference Collections”

Copy and Reference Collections
The Collection Classes implement no structure sharing between different collection
objects. The assignment operator and the copy constructor for collections are
defined to copy all elements of the given collection into the assigned or constructed
collection. You should remember this point if you are using collection types as
arguments to functions. If the argument type is not a reference or pointer type, the
collection is passed by the copy constructor, and changes made to the collection
within the called function do not affect the collection in the calling function.

If you want a function to modify a collection, pass the collection as a reference:
void removeListMember (AddressList aList) { /* ... */ } // wrong
void removeListMember (AddressList & aList) { /* ... */ } // right

For the sake of efficiency, avoid having a collection type as the return type of a
function:
AddressList f()
{

AddressList aList;
// ...
return aList;

}

Business=f(); //Very inefficient

In this program Business becomes a reference argument to the assignment
operation, which would again copy the set. A better approach is:
void f(AddressList& aList) { /* ... */ }
// ...
f(Business);

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Replace the Default Implementation” on page 315

Implement Element- and Key-Type Functionality
The member functions of the Collection Class Library call other functions to
manipulate elements and keys. These functions are called element functions and
key-type functions, respectively.

Chapter 8. Collection Classes Overview 323

Member functions of the Collection Class Library may, for example, use the
element’s assignment or copy constructors for adding an element, or they may use
the element’s equality operator for locating an element in the collection. In addition,
Collection Class functions use memory management functions for the allocation and
deallocation of dynamically created internal objects (such as nodes in a tree or a
linked list).

A given collection may require the following element functions:

v Default and copy constructor

v Destructor

v Assignment operator

v Equality test

v Ordering relation

v Key access

v Hash function

This list is the superset of all element functions and key-type functions that a
Collection Class can ever require. For example, a collection without keys does not
require any key-type functions, and a collection without element equality does not
require an equality test.

A given collection may require the following key-type functions:

v Equality test

v Ordering relation

v Hash function

Where possible, these functions are already defined by the Collection Class Library.
Default memory management functions are provided for usage with any element
and key type. For the standard C++ data types int and char*, defaults are offered
for all element and key-type functions. For all other element and key types, you
must provide these functions.

For implementation variants where both equality test and ordering relation are
required (or where both are required key-type functions), the library does not define
which of the two is used to determine element or key equality.

You can define these functions in three ways:

v Defining member functions of the element object type.

v Defining separate global functions.

v Using or defining an element operations class.

Some collections may require allocation and deallocation functions. The second and
third methods can also be used to replace the default memory management
functions for some of the collections.

Define Member Functions of the Element Object Type
The easiest way to provide the required element or key-type functions is to use
member functions. For assignment, equality, and ordering relation, operator=,
operator==, and operator< are used, respectively. Certain element functions and
key-type functions must be defined as member functions. Others cannot be defined
as member functions, but must be defined as separate functions.

You must define these functions using member functions:

324 IOC Library User’s Guide

v Constructors

v Destructors

Except for assignment, you must define member functions of a class as const. You
will get a compile-time error if you do not include const in these definitions.

The following example shows how member functions must be defined as const:
class Element {
public:

Element& operator= (Element const&);
bool operator== (Element const&) const;
bool operator< (Element const&) const;

};

The Collection Class Library does not check or use the return type of operator=().
The return type of equality and ordering relation must be compatible with type bool.

Define Separate Global Functions
You can use global functions to provide the required element and key functions. A
global function is a function that is not a member of any class. Use global functions
when, in instantiating the Collection Class, you have no control over the element
class and the element class does not define the appropriate functions.

The following functions must be defined as global functions that are not members of
any class:

v Functions for key access

v Functions for hashing

v Functions for memory management

The following shows what the declarations for these global functions must look like:
void assign (Element&, Element const&);
bool equal (Element const&, Element const&);
ioc::numeric_t compare (Element const&, Element const&)const;
Key const& key (Element const&)const;
ioc::unumeric_t hash (Element const&, ioc::unumeric_t);
bool equal (Key const&, Key const&);
ioc::inumeric_t compare (Key const&, Key const&)const;
ioc::unumeric_t hash (Key const&, ioc::unumeric_t)const;

You can also use global functions for the standard memory management functions,
as defined by the C++ language:
void* operator new (size_t);
void operator delete (void*);

The compare function must return a value that is less than, equal to, or greater than
zero, depending on whether the first argument is less than, equal to, or greater than
the second argument.

The hash function must return a value that is less than the second argument; this
value may be achieved, for example, by computing the remainder (operator%) with
the second argument. The hash function should evenly distribute over the range
between zero and the second argument. For equal elements or keys, the hash
element must yield equal results.

An efficient hash function is very important to the performance of your program.

Chapter 8. Collection Classes Overview 325

For assign, equal, and compare, template functions are defined that will be
instantiated unless otherwise specified. The default for assign uses the assignment
operator, the default for equal uses the equality operator, and the default for
compare uses two comparisons with operator<. It is therefore advisable to define
your own compare function if the given element type has a more efficient
implementation available. Such definitions are already provided for integer types
using operator- and for char* using strcmp. By default, the standard memory
management functions are used. (Using operator- works for integer types because
the result of a-b can be used to determine whether a<b evaluates to true.)

The following examples demonstrate the use of a global function for the definition of
the key access. The element class is Person, its data member PersonName is the
key, and its member function GetPersonName is used to access the key.

Header File
The example below is the header file:
//person.h - header file containing class Person
#include <iostream.h>
#include <istring.hpp>

class Person {
IString PersonName; //This will be used as the key
IString TNumber;

public:
//constructor
Person() : PersonName(“”), TNumber(“”) {}

//copy constructor
Person(IString Name, IString Number)

: PersonName(Name), TNumber(Number)
{
}

IString const& GetPersonName() const { return PersonName; }
IString const& GetTNumber() const { return TNumber; }
bool operator== (Person const& A) const
{

return (PersonName == A.GetPersonName()) &&
(TNumber == A.GetTNumber());

}

bool operator<(Person const& A) const
{

return (PersonName < A.GetPersonName());
}

};

ostream& operator<<(ostream& os,Person A);

// Use separate function Key const& key (Element const&);

inline IString const& key (Person const& A) //Key access
{

return A.GetPersonName();
}

Main File
The example below is the main file.
//main.cpp - main file
#include “person.h” //person.h from the previous example
#include <ikeyset.h>

326 IOC Library User’s Guide

typedef IKeySet <Person,IString> AddressList;

ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}

int main(int argc, char *argv[])
{

AddressList Business;
AddressList::Cursor myCursor(Business);
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(D);
Business.removeElementWithKey(“Carl Render”);

forICursor(myCursor) {
cout<<Business.elementAt(myCursor);

}
return 0;

}

Use or Define an Element Operation Class
You can use element operation classes in cases where you want to place elements
of one type into more than one collection, and where the element or key-type
functions are different for each collection. For example, suppose you require an
element type that is used to instantiate employee records that can be sorted either
by name or by salary. You can declare an element class Person, and then place
references to each Person instance into each of two collections. In one collection,
the key is the name; in the other, the key is the salary. In your program, you need
to define different element and key-type functions for hashing, comparison, and so
on. Because these functions are not identical for both collections, you cannot define
them within the class Person.

You can provide different sets of element and key-type functions for a given
element type and multiple collections, by using the IG... class template for the
collection you want to use. This class template lets you define element functions
separately from the element class. In the case of the employee program, you can
declare two classes as follows:
IGKeySortedSet <PersonPtr, int, SalaryOps> SalaryKSet;
IGKeySortedSet <PersonPtr, IString, NameOps> NameKSet;

You then need to define two other classes, SalaryOps and NameOps, which must
contain appropriate element and key-type functions.

When you do not provide element or key operations by using an IG... collection, the
standard class template (I... as opposed to IG...) defines default operations. These
default operations are declared in istdops.h.

The following excerpt shows the definition of the class templates for
ISequenceAsList and IGSequenceAsList:
template < class Element, class ElementOps >
class IGSequenceAsList { /* ... */ };

template < class Element >

Chapter 8. Collection Classes Overview 327

class ISequenceAsList
: public IGSequenceAsList<Element, IStdOps<Element>>

{
/* ... */

};

The advantage of passing the arguments using an extra class instead of passing
them as function pointers is that the class solution allows inlining.

The following is a skeleton for operation classes. The keyOps member must only be
present for key collections. Note that all element and key operations must be
defined as const.
template <class Element, class Key>
class ...Ops {
public:

void* allocate (ioc::isize_t) const;
void deallocate (void*) const;
void assign (Element&, Element const&) const;

bool equal (Element const&, Element const&) const;
ioc::numeric_t compare (Element const&, Element const&) const;
Key const& key (Element const&) const;
ioc::unumeric_t hash (Element const&, ioc::unumeric_t) const;

class KeyOps
{

bool equal (Key const&, Key const&) const;
long compare (Key const&, Key const&) const;
unsigned long hash (Key const&, unsigned long) const;

} keyOps;
};

You can inherit from the following class templates when you define your own
operation classes. Templates with argument type T can be used for both the
element and the key type.
class IStdMemOps {
public:

void* allocate (ioc::isize_t) const;
void deallocate (void*) const;

};

template < class T >
class IStdAsOps
{

void assign (T&, T const&) const;
};

template < class T >
class IStdEqOps
{

bool equal (T const&, T const&) const;
};

template < class T >
class IStdCmpOps
{

ioc::numeric_t compare (T const&, T const&) const;
};

template < class Element, class Key >
class IStdKeyOps
{

Key const& key (Element const&) const;
};

328 IOC Library User’s Guide

template < class T >
class IStdHshOps
{

ioc::unumeric_t hash (T const&, unsigned long) const;
};

The file istdops.h defines the above templates. It also defines other templates that
combine the properties of one or more of the templates.

Things to Watch Out For
One of the C++ language rules states that function template instantiations are
considered before conversions. Because the Collection Classes define default
templates for element functions, functions such as equal or compare, defined for a
class, will not be considered for that class’s derived classes; the default template
functions will be instantiated instead. In the following example, the compiler would
attempt to instantiate the template compare function for class B, instead of
inheriting the compare function of class A and converting B to A:
class A {

// ...
};

long compare(A const&, A const&);

class B : public A {
// ...

};

ISortedSet BSet;

The instantiated default compare function for class B uses the operator< of B. If no
operator< for B can be found, a compilation error occurs. You must define standard
functions such as equal or compare for the actual element type B to prevent the
template instantiation of those functions, in case you want to provide a
class-specific equal or compare function for B.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Collection Characteristics” on page 294

“Define Equality Relation”
“Define Key or Element Equality” on page 330
“Define an Operations Class” on page 331
“Manage Memory with Element Operation Classes” on page 334

Define Equality Relation
A flat collection can have an equality relation defined for its elements. The default
equality relation is based on the element as a whole, not just on one or more of its
data members (for example, the key). For two elements to be equal, all data
members of both elements must be equal. The equality relation is needed for
functions such as those that locate or remove a given element. A flat collection that
has an equality relation has element equality.

For collections containing non-built-in types, you can define your own equality
relation to behave differently. For example, your equality relation could test only

Chapter 8. Collection Classes Overview 329

certain data members of two elements to determine element equality. In such
cases, element equality may apply to two elements even when the elements are not
exactly equal.

The equality relation for keys may be different than the equality relation for
elements. Consider, for example, a job control block that has a priority and a job
identifier that defines equality for jobs. You could choose to implement a job
collection as unordered, with the job ID as key, or as sorted by priority, with the
priority as key. In the first case, you have fast access through the job ID but not
through the priority; in the second case, you have fast access through the priority
but not through the job ID. The ordering relation on the priority key in the second
case does not yield a job equality, because two jobs can have equal priorities
without being the same.
typedef unsigned long JobId;
typedef int Priority;
class Job {

JobId ivId; // These are private data members.
Priority ivPriority;

public:
JobId id () const { return ivId; }
Priority priority () { return ivPriority; }

};
// If ivId is the key:
JobId const& key (Job const& t)
{ return t.id (); }
// If ivPriority is the key:
Priority const& key (Job const& t)
{ return t.priority (); }
// ...

Functions like locateElementWithKey use the equality relation on keys to locate
elements within a collection. A collection that defines key equality may also define
element equality. Functions that are based on equality (such as locate) are only
provided for collections that define element equality. Collections that define neither
key equality nor element equality, such as heaps and sequences, provide no
functions for locating elements by their values or testing for containment. Elements
can be added and retrieved from such collections by iteration. For sequences,
elements can also be added and retrieved by position.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Collection Characteristics” on page 294

“Implement Element- and Key-Type Functionality” on page 323
“Define Key or Element Equality”
“Define an Operations Class” on page 331
“Manage Memory with Element Operation Classes” on page 334

Define Key or Element Equality
A sorted collection must define either key equality or element equality. A sorted
collection that does not have a key defined must have an ordering relation defined
for the element type. This relation implicitly defines element equality.

Keys can be used to access a particular element in a collection. The alternative to
defining element equality as equality of all data members is to define it as equality

330 IOC Library User’s Guide

of keys only. (In the example below, this means defining job equality as equality of
the job ID.) Use this alternative only when you are sure that keys are unique. When
you use this alternative, you can locate an element only with the key (using
locateElementWithKey(key) instead of locate(element). Locating elements by key
improves performance, particularly if the complete element is large or difficult to
construct in comparison to the key alone. Consider the two alternatives in the
following example:
// First solution
JobId const& key (Job const& t) { return t.id; }
KeySet < Job, int > jobs;
// ...
jobs.locateElementWithKey (1);

// Second solution
bool operator== (Job const& t1, Job const& t2)
{ return t1.id == t2.id; }
Set < Job > jobs;
// ...
Job t1;
t1.id = 1;
jobs.locate (t1);

The first solution is superior, if job construction (Job (t1) requires a significant
proportion of the total system resources used by the program.

The Collection Class Library provides sorted and unsorted versions of maps and
relations, for which both key and element equality must be defined. These
collections are similar to key set and key bag, except that they define functions
based on element equality, namely union and intersection. The add function
behaves differently toward maps and relations than it does toward key set and key
bag.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Collection Characteristics” on page 294

“Implement Element- and Key-Type Functionality” on page 323
“Define Equality Relation” on page 329
“Define an Operations Class”
“Manage Memory with Element Operation Classes” on page 334

Define an Operations Class
To define an operations class, use the predefined templates for standard functions,
and define the specific functions individually.

Consider, for example, a person’s name (PersonName) and phone number
(TNumber). The name serves as the key for an address list, while the phone
number serves as the key for a phone list. Because the key function is already
defined to yield the person’s name, the phone list has to be instantiated in the
following way:

Header File
This is the header file:

Chapter 8. Collection Classes Overview 331

//person.h - header file containing class Person
#include <iostream.h>
#include <istring.hpp>
#include <istdops.h>

class Person {
IString PersonName;
IString TNumber;

public:
//constructor
Person()

: PersonName(“”), TNumber(“”)
{
}

//copy constructor
Person(IString name, IString number)

: PersonName(name), TNumber(number)
{
}

IString const& GetPersonName() const { return PersonName; }
IString const& GetTNumber() const { return TNumber; }
bool operator==(Person const& A) const
{

return (PersonName == A.GetPersonName()) &&
(TNumber==A.GetTNumber());

}

bool operator<(Person const& A) const
{

return (PersonName < A.GetPersonName());
}

};

ostream& operator<<(ostream& os, Person A);

class PhoneOps : public IStdMemOps, public IStdAsOps<Person> {
public:

IString const& key(Person const& A) const
{

return A.GetTNumber();
}

IStdCmpOps <IString> keyOps;
};

inline IString const& key(Person const& A) //Key access
{

return A.GetPersonName();
}

Main File
This is the main file:
//main.cpp - main file
#include “person.h” //person.h from the previous example
#include <istdops.h>
#include <ikeyset.h>

typedef IKeySet <Person,IString> AddressList;
typedef IGKeySet <Person,IString,PhoneOps> PhoneList;

ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() <<

332 IOC Library User’s Guide

“ ” << A.GetTNumber());
}

int main(int argc, char *argv[])
{

AddressList Business;
PhoneList PhoneBook;

AddressList::Cursor myCursor1(Business);
PhoneList::Cursor myCursor2(PhoneBook);

Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(D);
PhoneBook.add(A);
PhoneBook.add(B);
PhoneBook.add(C);
PhoneBook.add(D);

cout << “\n\nPhoneBook before removing an element: ”;
forICursor(myCursor2) {

cout<<PhoneBook.elementAt(myCursor2);
}

cout << “\n\nPhoneBook after removing an element: ”;
PhoneBook.removeElementWithKey(“714-50706”);
forICursor(myCursor2) {

cout<<PhoneBook.elementAt(myCursor2);
}

cout << “\n\nBusiness before removing an element: ”;
forICursor(myCursor1) {

cout<<Business.elementAt(myCursor1);
}

cout << “\n\nBusiness after removing an element: ”;
Business.removeElementWithKey(“Peter Black”);
forICursor(myCursor1) {

cout<<Business.elementAt(myCursor1);
}
return 0;

}

The functions that are required for a particular Collection Class depend not only on
the abstract class but also on the concrete implementation choice. If you choose a
set to be implemented through a hash table, the elements require a hash function.
If you choose a (sorted) AVL tree implementation, elements need a comparison
function. Even the default implementations may require more functions to be
provided than would be necessary for the collection interface.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Collection Characteristics” on page 294

“Implement Element- and Key-Type Functionality” on page 323
“Define Equality Relation” on page 329

Chapter 8. Collection Classes Overview 333

“Define Key or Element Equality” on page 330
“Manage Memory with Element Operation Classes”

Manage Memory with Element Operation Classes
The following illustrates the use of memory management with element operation
classes.

Suppose you want to use your own element operation class to provide a special
form of memory management. For example, you want an entire collection (the
collection body plus the elements) to reside in a database, or in shared memory. To
do this you can code:
IGSequenceAsList<Element, MyOperationsClass>

where MyOperationsClass is an element operations class you have coded, which
provides your own element allocate and deallocate operations. This class may or
may not inherit from previously described template classes, except that it must
inherit from IStdMemOps.

A certain instance of your collection is instantiated together with an instance of your
MyOperationsClass. You can retrieve the this pointer of this instance of
MyOperationsClass to find out where the collection is instantiated, and you can use
this address in your implementation of the allocate element function to allocate your
elements in the same memory pool where your collection resides.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Collection Characteristics” on page 294

“Implement Element- and Key-Type Functionality” on page 323
“Define Equality Relation” on page 329
“Define Key or Element Equality” on page 330
“Define an Operations Class” on page 331

Iteration
Iterating over all or some of elements of a collection is a common operation. The
Collection Classes give you two methods of iteration:

v Using cursors

v Using the allElementsDo function together with applicators or applicator functions

Ordered (including sorted) collections have a well-defined ordering of their
elements, while unordered collections have no defined order in which the elements
are visited in an iteration. However, in both cases, each element is visited exactly
once.

You cannot add or remove elements from a collection while you are iterating over a
collection, or all elements may not be visited once. You cannot use any of the
iterations described in this section if you want to remove all of the elements of a
collection that have a certain property. Instead, use the function removeAll that
takes a predicate function as an argument.

334 IOC Library User’s Guide

Iteration with Cursors
A cursor is a reference to the position of an element in a collection. If the position of
that element changes, the cursor is invalidated. A cursor is always associated with a
collection. The collection is specified when the cursor is created. Each collection
function that takes a cursor argument has a precondition that the cursor actually
belongs to the collection. Simple functions, such as advancing the cursor, are
functions of the cursor itself.

With cursors the Collection Classes provide:

v An iteration scheme that is simpler than using applicators.

v The ability to define functions that return cursors. Such functions can give you
fast access to an element if it exists, or indicate the non-existence of an element
by returning an invalid cursor.

Cursors are only temporarily defined. As soon as elements are added to or
removed from the collection, existing cursors become undefined. When a cursor
becomes undefined, one of the three following situations occur:

1. The cursor is invalidated (isValid will return false).

2. The cursor remains valid and points to an element of the collection; however, it
may point to a different element than before.

3. The cursor remains valid but no longer points to an element of the collection.

Do not use an undefined cursor as an argument to a function that requires the
cursor to point to an element of the collection. The Collection Classes do not
provide any methods to determine whether or not a cursor is undefined.

Each concrete collection class, such as ISet<int>, has an inner definition of a class
Cursor that can be accessed as ISet<int>::Cursor.

Because abstract classes declare functions on cursors just as concrete classes do,
there is a base class ICursor for these specific cursor classes. To allow for the
creation of specific cursors for all kinds of collections, every abstract class has a
virtual member function newCursor, which creates an appropriate cursor for the
given collection object.

Iteration with allElementsDo
Cursor iteration has two possible drawbacks:

v For unordered collections, the explicit notion of an (arbitrary) ordering may be
undesirable for stylistic reasons. For example, it could mislead you (or another
programmer) into perceiving or exploiting an order where in fact the order does
not exist or is not guaranteed.

v Iteration in an arbitrary order might be done more efficiently using something
other than cursors. For example, with tree representations, a recursive descent
iteration may be faster than the cursor navigation, even though the time for extra
function calls must be considered.

The Collection Classes provide the allElementsDo function that addresses both
drawbacks by calling a function that is applied to all elements. The function returns
a value of type bool that tells whether the iteration should be continued or not. For
ordered collections, the function is applied in this order. Otherwise the order is
unspecified.

Chapter 8. Collection Classes Overview 335

The function that is applied in each iteration step can be given in two ways: directly
as a C++ function, or by defining the function as a method of a user-defined
applicator class:

v As a C++ function: Code the function that you want to be applied to all elements
as a C++ function, then use allElementsDo to apply the function to the elements.

v As an object of an applicator class: Derive your own class from one of the
applicator classes, IApplicator or IConstantApplicator. Redefine the virtual
function applyTo(). When you call allElementsDo(), the program will apply the
code in applyTo() to all the elements of your collection.

The second possibility is more flexible. You can add additional arguments to
applyTo() if needed. You can also reuse the applicator class.

“Chapter 8. Collection Classes Overview” on page 293

“Locate and Access Elements with Cursors”
“Iterate over a Collection with Cursors” on page 337
“Iterate over a Collection with allElementsDo and Applicators” on page 339

Locate and Access Elements with Cursors
Cursors provide a basic mechanism for accessing elements of collection classes.
For each collection, you can define one or more cursors, and you can use these
cursors to access elements. Collection Class functions such as elementAt, locate
and removeAt use cursors.

The elementAt function lets you access an element using a cursor. The elementAt
function returns a reference to an element, thereby avoiding copying the elements.
Suppose that an element had a size of 20KB and you want to access a 2-byte data
member of that element. If you use elementAt to return a reference to this element,
you avoid having to copy the entire element to a local variable.

Several other functions, such as firstElement or elementWithKey, return a reference
to an element. They can be thought of as first executing a corresponding cursor
function, such as setToFirst or locateElementWithKey, and then accessing the
element using the cursor.

You must determine if the element exists before trying to access it. If its existence is
not known from the context, it must first be checked.

To save the extra effort of locating the desired element twice (once for checking
whether it exists and then for actually retrieving its reference), use the cursor that is
returned by the locate function for fast element access:
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples

typedef ISet <Person> AddressList;

int main(int argc, char *argv[])
{

AddressList business;
AddressList::Cursor myCursor(business); //Cursor definition

336 IOC Library User’s Guide

Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Person E;

business.add(A);
business.add(B);
business.add(C);
business.add(D);
if (business.locate(B, myCursor)){

E=business.elementAt(myCursor) ;
}
else {

cout << “\nElement not in set !” << endl;
}

business.remove(B); //myCursor is no longer valid
if (business.locate(B, myCursor)) {

E=business.elementAt(myCursor);
}
else {

cout << “\nElement not in set !” << endl;
}
return 0;

}

The elementAt function can also be used to replace the value of the referenced
element. You must ensure that the positioning property of the element is not
changed with respect to the given collection.

There are two versions of elementAt:

Element const& elementAt (ICursor const&) const
Element& elementAt (ICursor const&)

Use the first version of elementAt if you want to ensure that the located element
cannot be changed by any subsequent function.

“Chapter 8. Collection Classes Overview” on page 293
“Iteration” on page 334

“Iterate over a Collection with Cursors”
“Iterate over a Collection with allElementsDo and Applicators” on page 339
“Handle Exceptions with Cursors” on page 359

Iterate over a Collection with Cursors
Cursor iteration can be done with a for loop. Consider the following example:
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples

typedef ISet <Person> AddressList;

ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

Chapter 8. Collection Classes Overview 337

}

int main(int argc, char *argv[])
{

AddressList Business;
AddressList::Cursor myCursor(Business);
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Person E;
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(D);

//List of all elements in the set
for (myCursor.setToFirst();

myCursor.isValid();
myCursor.setToNext())

{
cout << Business.elementAt(myCursor);

}
return 0;

}

AddressList::Cursor is the Cursor class that is nested within the class AddressList.
Its constructor takes a Business object as an argument. The name of the cursor
object in the example above is myCursor.

The Collection Classes define a macro forICursor that lets you write a cursor
iteration even more elegantly:
#define forICursor(c) \

for ((c).setToFirst(); \
(c).isValid(); \
(c).setToNext())

Use it like this:
forICursor(myCursor) {

cout << Business.elementAt(myCursor);
}

If the element is used read-only, a function of the cursor can be used instead of
elementAt(myCursor):
forICursor(myCursor) {

cout << myCursor.element(); //myCursor is associated to Business
}

The function element above is a function of the Cursor class. It returns a const
reference to the element currently pointed at by the cursor. The element returned
might therefore not be modified. Otherwise it would be possible to manipulate a
constant collection by using cursors.

To remove multiple elements from a collection, use the removeAll function with a
predicate function as an argument. Using cursor iteration to identify the elements to
remove causes the first element removed to invalidate the cursor.

“Chapter 8. Collection Classes Overview” on page 293
“Iteration” on page 334

338 IOC Library User’s Guide

“Locate and Access Elements with Cursors” on page 336
“Iterate over a Collection with allElementsDo and Applicators”
“Iterate over a Collection with allElementsDo and Applicators”“Handle Exceptions
with Cursors” on page 359

Iterate over a Collection with allElementsDo and Applicators
The following example shows the use of the allElementsDo function and
applicators.
//main.cpp - main file
#include <iset.h>
#include <iostream.h>
#include “person.h” //person.h from the previous examples

typedef ISet<Person> AddressList;

ostream& operator<<(ostream& os, Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}

class ListApplicator: public IConstantApplicator<Person> {
public:

bool applyTo(Person const& A)
{

cout << A;
return true;

}
};

void ListFunction(AddressList const& List)
{

ListApplicator LA;
List.allElementsDo (LA);

}

int main(int argc, char *argv[])
{

AddressList Business;
AddressList::Cursor myCursor(Business);
Person A(“Peter Black”,“714-50706”);
Person B(“Carl Render”,“714-540321”);
Person C(“Sandra Summers”,“x”);
Person D(“Mike Summers”,“x”);
Person E;
Business.add(A);
Business.add(B);
Business.add(C);
Business.add(D);

//List of all elements in the set
ListFunction(Business);
return 0;

}

This time you get the address listing using an applicator.

“Chapter 8. Collection Classes Overview” on page 293
“Iteration” on page 334

Chapter 8. Collection Classes Overview 339

“Locate and Access Elements with Cursors” on page 336
“Iterate over a Collection with Cursors” on page 337
“Handle Exceptions with Cursors” on page 359

Smart Pointers
In C++, variables and function arguments have their values copied when they are
assigned. This copying can decrease a program’s efficiency, especially when the
objects are large. To improve efficiency, pointers or references are often used for
common objects. For example, a pointer or reference to the object can be copied,
instead of the object itself.

For efficiency, pointers to elements can be used as collection element types, rather
than the elements themselves. References are not allowed as collection element
types.

The Collection Classes define five pointer classes, called smart pointers. You can
store these smart pointers, as well as standard C++ pointers, as elements in any
collection:

v IElemPointer

v IAutoPointer

v IAutoElemPointer

v IMngPointer

v IMngElemPointer

Smart Element Pointers
IElemPointer, IAutoElemPointer and IMngElemPointer are special smart pointers
that are designed to be kept as elements in a collection. If you store standard C++
pointers in a collection, the collection performs all element and key-type functions,
except assignment, on the pointers themselves rather than on the object to which
the pointer refers. This is not always what you intend. If you want the collections to
perform element functions, such as equality test, on the referenced elements
instead, use one of the smart element pointers (one of the classes named
IxxxElemPointer). They are objects which behave as pointers to the actual element.
With the element pointers, the elements themselves are not stored in the collection,
although information from the elements is used by Collection Classes functions.

Automatic Storage Management
IAutoPointer, IAutoElemPointer, IMngPointer and IMngElemPointer perform storage
management, which means that under certain conditions they automatically delete
the object to which they refer. Automatic pointers (IAutoPointer and
IAutoElemPointer) automatically delete the referenced object when the automatic
pointer instance is destructed or the automatic pointer is used to point to another
object. Managed pointers (IMngPointer and IMngElemPointer) keep a reference
count for each referenced object. The referenced object of a managed pointer is
deleted only when the last managed pointer to the object is destructed.

IElemPointer does not provide automatic storage deallocation.

Automatic storage management is particularly useful when functions return pointers
or references to objects that they have created (dynamically allocated), and the last
user of the object is responsible for cleaning up.

340 IOC Library User’s Guide

To exploit the advantage of memory management, you can use non-element smart
pointers (IAutoPointer and IMngPointer), instead of standard C++ pointers, without
storing them in a collection. They behave similarly to standard C++ pointers. For
example, if you check the equality of two such pointers from your collection of
pointers, true is only returned if the pointers point to the same address (this is the
same behavior as you would expect for native C++ pointers).

The auto_ptr Template Class
The Standard Template Library (STL) provides the auto_ptr template class. This
template class has the equivalent functionality of the IAutoPointer class, but does
not have any dependencies on the IBM Open Class. The auto_ptr template class is
defined in <memory>.

For more information about the auto_ptr template class refer to the z/OS C/C++
Run-Time Library Reference.

“Chapter 8. Collection Classes Overview” on page 293

“Construct Smart Pointers”
“Choose the Appropriate Smart Pointer Class” on page 342
“Use Automatic Pointers” on page 343
“Use Element Pointers” on page 345
“Use Managed Pointers” on page 349

Construct Smart Pointers
All smart pointers have two constructors: a default constructor that initializes the
pointer to NULL, and a constructor taking a C++ pointer to an element that you
must have created before (using new).

Implicit conversions from a C++ pointer to a managed or automatic pointer are
dangerous: elements might be implicitly deleted without your being aware that this
has happened. Therefore, the conversion functions for these classes take an extra
argument IINIT to make the construction explicit. Hence, the notation for creating a
managed or automatic pointer is:
IAutoPointer < E > ePtr (new E, IINIT);

After you have constructed a managed or automatic pointer from a C++ pointer, you
should no longer use the C++ pointer. You should only access the element through
the pointer of the given class. Otherwise, the element could be implicitly destructed
while a C++ pointer still refers to it. In particular, you must not construct two
managed pointers or two automatic pointers from the same C++ pointer, because
this would cause the managed pointers to keep two separate reference counts, and
to implicitly delete the referenced element twice. For example:
IString* s = new IString(“...”);
IMngPointer < IString > p1 (s, IINIT); // OK
IMngPointer < IString > p2 (s, IINIT); // NO!
// Do not use s a second time, because the compiler may try to
// delete the IString object referred to by s, p1, and p2 twice.

You should keep the following rule in mind when using managed or automatic
pointers created from standard pointers: Never use the C++ pointer once the
managed or automatic pointer has been created from it, because this may interfere
with the automatic storage management. For example, the object that is referenced

Chapter 8. Collection Classes Overview 341

by a C++ pointer and by an automatic pointer created from this C++ pointer, is
deleted as soon as the automatic pointer gets out of scope. The C++ pointer then
points to undefined storage.

The extra IINIT argument is introduced to make such situations explicit and
especially to avoid the usage of the constructor as an implicit conversion operator.
The IINIT argument is defined as follows:
enum IExplicitInit {IINIT};

Basic Types
The smart pointers do not work with basic types such as int, long, and char.

Key Collections
If you implement a key collection containing element pointers, you must define your
key function with the element as input, not the pointer to the element, for example:
typedef IKeySortedSet<IMngElemPointer<Element>,int> keySortedSetOfPointers;

int const& key(Element const& element)
{

return element.elementKey();
}

where elementKey returns the element’s key.

“Chapter 8. Collection Classes Overview” on page 293
“Smart Pointers” on page 340

“Choose the Appropriate Smart Pointer Class”
“Use Automatic Pointers” on page 343
“Use Element Pointers” on page 345
“Use Managed Pointers” on page 349

Choose the Appropriate Smart Pointer Class
The following features of Collection Classes pointer types give you the choices
shown in the table below. (Standard C++ pointers are included for comparison.)

Destruction of Pointed Objects

Not managed When out-of-scope Reference counted

Collections call
element operations
on pointer

Standard C++ pointer IAutoPointer IMngPointer

Collections call
element operations
on referenced
object

IElemPointer IAutoElemPointer IMngElemPointer

Smart pointers can only take arguments of type class or struct. This is because the
overloaded operator-> needs to return an object of such a type. You can apply
pointer objects from these five classes in the same way you use ordinary C++
pointers, with the * and -> operators. Elements are implicitly deleted except in the
case of IElemPointer. To delete an element referred to by an IElemPointer you must
use an explicit conversion to the referenced element type:

342 IOC Library User’s Guide

IElemPointer<E> ptr;
// ...
delete (E*) ptr;

Element Functions and Elements Referenced by Pointers
If you want element functions to work on the elements referenced by the pointers,
the Collection Classes offer the IElemPointer, IAutoElemPointer and
IMngElemPointer pointer classes, which are instantiated with the element type.
Pointers of these classes automatically apply all element functions, except for
assignment, to the referenced object. Element pointers are constructed from C++
pointers. The C++ dereferencing operators * and -> are defined, for element
pointers, to refer to the referenced objects.

The dynamically created elements are not automatically deleted when they are
removed from the collection.

“Chapter 8. Collection Classes Overview” on page 293
“Smart Pointers” on page 340

“Construct Smart Pointers” on page 341
“Use Automatic Pointers”
“Use Element Pointers” on page 345
“Use Managed Pointers” on page 349

Use Automatic Pointers
Automatic pointers should be used when the lifetime of the element is the same as
the lifetime of the pointer, but when an explicit deletion of the element is awkward
or even impossible. This applies in particular to pointers to objects that are
dynamically created within a function, and whose lifetime is the scope of the
function. The function may be left through several return statements or through an
exception being thrown from some other function being called.

Assign One Automatic Pointer to Another
Using the assignment operator, the automatic pointer is used to point to another
element (which is implicitly a new element). The assigned pointer is set to NULL.

Hold Automatic Pointers in a Collection
If you define a collection taking automatic pointers as elements, the elements are
automatically deleted when the collection is destructed, when an element is
removed, or, if the element was not added to the collection, when the variable or
temporary holding the pointer is destructed. The following example deletes all
pointers that were added previously to the set with the destruction of the set:
#include “person.h” // Declaration of Person class
#include <istdops.h>
#include <iset.h>

typedef IAutoElemPointer<Person> AEPointer;
typedef ISet<AEPointer> AddressList;

ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() <<“ ”<<A.GetTNumber());
}

int main(int argc, char *argv[])

Chapter 8. Collection Classes Overview 343

{
AddressList Business;
AddressList::Cursor myCursor1(Business);

Business.add(AEPointer (new Person(“Peter Black”,“714-50706”),IINIT));
Business.add(AEPointer (new Person(“Carl Render”,“714-540321”),IINIT));
Business.add(AEPointer (new Person(“Sandra Summers”,“x”),IINIT));
Business.add(AEPointer (new Person(“Mike Summers”,“x”),IINIT));
//The temporary automatic pointer variables were set to NULL
//when the pointer was copied to the collection.

//The following deletes the second Person (“Sandra ...”), because it
//was not added (note that in a set, each element occurs only once).
{

Business.add(AEPointer (new Person(“Sandra Summers”,“x”),IINIT));
}

forICursor(myCursor1) {
cout << *Business.elementAt(myCursor1);

}
return 0;

}

Transfer Automatic Pointers Between Functions
You should be aware of the implementation details described below when
transferring automatic pointers between functions. Consider the following cases:

Case 1: A calling function passes an automatic pointer to a called function
and the pointer is returned.

The following code passes an automatic pointer to a called function and the pointer
is returned.
IAutoPointer<Int> someFunc(IAutoPointer<Int> autoIntPtr)
{

return autoIntPtr;
}

...

int main(int argc, char *argv[])
{

IAutoPointer<Int> myIntPtr(new Int(5), IINIT);
cout << *someFunc(myIntPtr) << endl;
return 0;

}

This program results in the following taking place at runtime:

v The main function constructs an IAutoPointer object myIntPtr and initializes it with
the address of Int object 5 (where Int is a class that wraps an int).

v On invocation of someFunc, the copy constructor of IAutoPointer is called and
the new constructed auto pointer is initialized with the address of the given input
pointer. The given pointer is set to NULL. On return from someFunc, the copy
constructor of IAutoPointer constructs a new auto pointer in main and initializes it
with the address of the auto pointer object returned from someFunc, which then
is destructed.

v When main exits, it calls the destructors for all auto pointer objects and the
destructor for Int object 5.

Case 2: A called function has no input, but returns an object that has been
dynamically created using an automatic pointer.

344 IOC Library User’s Guide

The following code returns an object that has been dynamically created using an
automatic pointer.
Int someFunc()
{

IAutoPointer<Int> autoIntPtr(new Int(6), IINIT);
return *autoIntPtr;

}

...

int main(int argc, char *argv[])
{

cout << someFunc() << endl;
return 0;

}

This program results in the following taking place at runtime:

v On invocation of someFunc, this function constructs an IAutoPointer object,
constructs an Int(6) object, and initializes the auto pointer with the address of
Int(6).

v On return from someFunc, the copy constructor of Int constructs a new Int(6)
object in main. The auto pointer object and the Int(6) object in someFunc are
destructed.

v On exit from main, the Int(6) object is destructed.

Automatic Pointer Copy Constructor and Assignment Operator
An automatic pointer’s copy constructor and assignment operator are defined in a
way that resets the source pointer to NULL. This prevents multiple automatic
pointers from pointing to the same element. In the following example, p2 is implicitly
set to NULL:
IAutoPointer<SomeType> p1, p2;
...
p1 = p2;

However, the copy constructor and assignment operator still take a const argument
(using a const cast-away) to maintain compliance with the standard interface for
these operations. This standard interface is required, for example, when you use
these types as element types in collections, because the copy constructor and
assignment operator are required to have such an interface. (Otherwise, the
collection’s add function could not take a const argument.)

“Chapter 8. Collection Classes Overview” on page 293
“Smart Pointers” on page 340

“Choose the Appropriate Smart Pointer Class” on page 342
“Construct Smart Pointers” on page 341
“Use Element Pointers”
“Use Managed Pointers” on page 349

Use Element Pointers
If you create a collection of C++ pointers or pointers of type IMngPointer or
IAutoPointer, Collection Classes methods that use element comparison functions
will do the comparison on the elements’ pointers instead of on the elements
themselves.

Chapter 8. Collection Classes Overview 345

Directing Element Functions to the Referenced Element
The classes IElemPointer, IMngElemPointer, and IAutoElemPointer internally use a
function called elementForOps to direct functions such as equal and compare to the
referenced element, so that they are not applied to the pointer itself and so that
instantiations such as ISet <IElemPointer <Person>> perform the functions on the
elements. This indirection is usually transparent but you must consider it when you
derive classes from the IElemPointer class. The standard operation classes first
apply a function elementForOps to the element before they apply the corresponding
non-member (equal, ...) function. By default, a corresponding template function is
instantiated for elementForOps which takes an element as input and returns that
element. For pointer classes that perform operations on the pointers themselves
(IAutoPointer, IMngPointer), this function takes the pointer as input and returns the
same pointer. For pointer classes that perform the operations on the referenced
elements (IElemPointer, IAutoElemPointer, IMngElemPointer), this function takes the
pointer as input and returns the referenced element. If a class derived from
IElemPointer<E> is used as a collection element type, the default template
functions must be instantiated before a conversion will be considered. A derived
class must therefore explicitly redefine the elementForOps function, as shown in the
following example, where class PersonPtr redefines both versions of
elementForOps by calling the default elementForOps with a PersonPtr as argument.
Both versions are then made to return a cast to Person reference.
//person.h - header file containing class Person
#include <iostream.h>
#include <istring.hpp>
#include <iptr.h>

class Person
{

IString PersonName; //This will be used as the key
IString TNumber;

public:
//constructor
Person () : PersonName(“”), TNumber(“”) {}

//copy constructor
Person(IString Name, IString Number)

: PersonName(Name), TNumber(Number)
{
}

IString const& GetPersonName() const { return PersonName; }
IString const& GetTNumber() const { return TNumber; }
bool operator==(Person const& A) const
{

return (PersonName == A.GetPersonName()) &&
(TNumber==A.GetTNumber());

}

bool operator<(Person const& A) const
{

return (PersonName < A.GetPersonName());
}

};

class PersonPtr : public IElemPointer<Person> {

friend inline Person& elementForOps (PersonPtr& A)
{

return (Person&)elementForOps((IElemPointer<Person>&)A);
}

friend inline Person const& elementForOps(PersonPtr const& A)

346 IOC Library User’s Guide

{
return (Person const&)elementForOps((IElemPointer<Person>&)A);

}

public:
PersonPtr() : IElemPointer<Person>() {}
PersonPtr(Person* ptr,IExplicitInit IINIT)

: IElemPointer<Person>(ptr,IINIT) {}
};

ostream& operator<<(ostream& os,Person A);

inline IString const& key(Person const& A) //Key access
{

return A.GetPersonName();
};

This is the main file.
//main.cpp - main file
#include “person.h” //person.h from the previous example
#include <istdops.h>
#include <iset.h>

typedef ISet <PersonPtr> AddressList;

ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}

int main(int argc, char *argv[])
{

AddressList Business;
AddressList::Cursor myCursor1(Business);

PersonPtr Aptr (new Person(“Peter Black”,“714-50706”),IINIT);
PersonPtr Bptr (new Person(“Carl Render”,“714-540321”),IINIT);
PersonPtr Cptr (new Person(“Sandra Summers”,“x”),IINIT);
PersonPtr Dptr (new Person(“Mike Summers”,“x”),IINIT);
PersonPtr CopyCptr (new Person(“Sandra Summers”,“x”),IINIT);

Business.add(Aptr);
Business.add(Bptr);
Business.add(Cptr);
Business.add(Dptr);
Business.add(CopyCptr);

forICursor (myCursor1) {
cout << *Business.elementAt(myCursor1);

}
return 0;

}

CopyCptr and Cptr refer to different memory addresses, so both of them could be
put into the set. Using element pointers rather than regular pointers, all collection
functions are done on the elements to which the pointers point. That is why a
pointer pointing on Sandra Summers is only entered once into the list.

Element Functions That Work on the Pointers Instead of the Referenced
Elements
If you do want element functions to work on the pointers instead of the referenced
elements, you do not need to implement equality and ordering relation for the
chosen pointer type (IAutoPointer, IMngPointer or C++ pointers). The compiler can

Chapter 8. Collection Classes Overview 347

instantiate the default element function templates in such cases. If necessary, you
can implement your element functions for the referenced element type.

In the following example, adding, locating, and other functions are based on pointer
equality and ordering, and not on the equality defined for the Person type.
//main.cpp - main file
#include “person.h” //person.h from the previous example
#include <istdops.h>
#include <iset.h>

typedef IMngPointer <Person> ManagedPersonPtr;
typedef ISet <ManagedPersonPtr> AddressList;

ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName()
<< “ ” << A.GetTNumber());

}

int main(int argc, char *argv[])
{

AddressList Business;
AddressList::Cursor myCursor1(Business);

ManagedPersonPtr ptrA(new Person(“Peter Black”,
“714-50706”), IINIT);

ManagedPersonPtr ptrB(new Person(“Carl Render”,
“714-540321”), IINIT);

ManagedPersonPtr ptrC(new Person(“Sandra Summers”,
“x”), IINIT);

ManagedPersonPtr ptrD(new Person(“Mike Summers”,
“x”), IINIT);

ManagedPersonPtr copyPtrC(new Person(“Sandra Summers”,
“x”), IINIT);

Business.add(ptrA);
Business.add(ptrB);
Business.add(ptrC);
Business.add(ptrD);
Business.add(copyPtrC);

forICursor (myCursor1) {
cout << *Business.elementAt(myCursor1);

}
return 0;

}

The variables copyPtrC and ptrC refer to different memory addresses, so both of
them are entered into the set even if the element they point to is identical. This is
because equality now refers to the pointers even though it is also defined for
Person.

“Chapter 8. Collection Classes Overview” on page 293
“Smart Pointers” on page 340

“Implement Element- and Key-Type Functionality” on page 323
“Choose the Appropriate Smart Pointer Class” on page 342

348 IOC Library User’s Guide

“Construct Smart Pointers” on page 341
“Use Automatic Pointers” on page 343
“Use Managed Pointers”

Use Managed Pointers
Managed pointers keep a reference count for each referenced object (element).
When the last managed pointer to the object is destructed, the object is
automatically deleted. You should use managed pointers when you are unsure who
is responsible for deleting an object. This may occur where several pointers to an
object are introduced over time, and the order in which the pointers are released is
not known.

The following example shows how to use pointers from the IMngElemPointer class:
//main.cpp - main file
#include “person.h” //person.h from the previous examples
#include <istdops.h>
#include <iset.h>

typedef IMngElemPointer <Person> MEPersonPtr;
typedef ISet <MEPersonPtr> AddressList;

ostream& operator<<(ostream& os,Person A)
{

return (os << endl << A.GetPersonName() << “ ” <<
A.GetTNumber());

}

int main(int argc, char *argv[])
{

AddressList Business;
AddressList::Cursor myCursor1(Business);

MEPersonPtr Aptr (new Person(“Peter Black”,“714-50706”),IINIT);
MEPersonPtr Bptr (new Person(“Carl Render”,“714-540321”),IINIT);
MEPersonPtr Cptr (new Person(“Sandra Summers”,“x”),IINIT);
MEPersonPtr Dptr (new Person(“Mike Summers”,“x”),IINIT);
MEPersonPtr CopyCptr (new Person(“Sandra Summers”,“x”),IINIT);

Business.add(Aptr);
Business.add(Bptr);
Business.add(Cptr);
Business.add(Dptr);
Business.add(CopyCptr);

forICursor (myCursor1) {
cout << *Business.elementAt(myCursor1);

}

Business.remove(Cptr); //Remove pointer from collection
return 0;

}

After removing the pointer from the collection, the managed pointer is automatically
deleted. In the example, the allocated Person will automatically be deleted by the
remove function unless it is referenced through another PersonPtr.

Managed Pointers and Copying Elements
If you want to create managed pointers for a collection and copy in elements from a
second collection that already contains managed pointers, you cannot use IINIT
because it will destroy the managed pointers in the second collection. To avoid this
situation, you can use the following notation:

Chapter 8. Collection Classes Overview 349

typedef IMngElemPointer<PersonPtr> MyClassPtr;
typedef IKeySet<MyClassPtr> MyAddressList;

MyClassPtr pMyClass;
pMyClass = Business.elementWithKey(...);

In the above notation, Business is the collection from the previous examples, but
here it is an IKeySet collection rather than an ISet collection so that
elementWithKey can be used.

“Chapter 8. Collection Classes Overview” on page 293
“Smart Pointers” on page 340

“Choose the Appropriate Smart Pointer Class” on page 342
“Construct Smart Pointers” on page 341
“Use Automatic Pointers” on page 343
“Use Element Pointers” on page 345

Thread Safety and the Collection Classes
Like most of the IBM Open Class classes, the collection classes require thread safe
operation of multithreaded access to global data. The collections may be used in a
multithreaded environment, but any single instance of a collection may be
referenced by only one thread at a time. Different collections may be accessed
concurrently. For example, thread 1 references collection A concurrently with thread
2 referencing collection B.

The collection classes offer built-in Guard objects to simplify the explicit serialization
needed to protect the collection instance. While serialization for global data is still
necessary, the built-in support helps to reduce the amount of programming required.
Note, however, that the locking of elements stored within a collection is the
responsibility of the user and is not provided as part of collection class thread
safety.

Restrictions
The current implementation does not provide any means to support users who want
to program in a multiprocessing environment with the Collection Classes. These
classes provide no built-in serialization support for multiple processes. As a result,
you cannot share collection objects between multiple processes without adding your
own serialization mechanism. The Collection Classes only support thread safety
within a single process.

“Chapter 8. Collection Classes Overview” on page 293
“Open Class Threading Model” on page 47

“Insure Thread Safety with Guard Objects” on page 351
“Instantiate a Guard Object” on page 351
“Use Guard Objects” on page 352
“Start a Thread” on page 53

350 IOC Library User’s Guide

Insure Thread Safety with Guard Objects
For each different collection abstraction, a Guard class similar to IResourceLock
has been defined and a corresponding typedef added:
template <class Element> class ICollectionGuard { ... };
typedef ICollectionGuard<Element> guard;

Essentially, a Guard object is an object created on a stack that is used to lock some
other object. Guard objects are useful in C++ because they respond properly to
exceptions. When an exception is thrown while still in the scope of the Guard
object, its destructor is called as the exception passes through the stack frame and
the destructor unlocks the target object. As a result, the exception can be caught
and dealt with by code further up the call chain without leaving the locked object in
an unusable locked state.

The Guard typedef can be used as if it was a nested class of a particular collection:
template <class Element>
class ICollectionGuard
{
public:

ICollectionGuard(
IACollection<Element>&, long timeout = -1);
xICollectionGuard();

private:
IACollection<Element>& ivCollection;

};

The timeout parameter is only supported on Windows; it is ignored on all
other platforms.

“Chapter 8. Collection Classes Overview” on page 293
“Thread Safety and the Collection Classes” on page 350
“Open Class Threading Model” on page 47

“Instantiate a Guard Object”
“Use Guard Objects” on page 352

Instantiate a Guard Object
ICollectionGuard<Element> Constructor and Destructor
The Guard constructor takes the collection object to be locked and an optional
timeout value as parameters. The timeout value is specified in milliseconds. If a
lock request cannot be resolved within the specified range of time, an exception is
thrown. The timeout value defaults to -1 to indicate an indefinite wait. The value 0
informs the constructor to throw an exception if the lock is not immediately
available.

This parameter is only supported on non-POSIX (Windows) platforms.
Other platform implementations ignore the specification of this value.

The Guard destructor unlocks the Collection specified within the constructor of the
Guard.

Chapter 8. Collection Classes Overview 351

Guard Copy Constructor
The Guard copy constructor is made private in order to prevent the user from
copying Guard objects.

Collection Constructor and Destructor
The collection does not keep track of all possible Guard objects currently in use
with the target collection. Guards for a collection must be destructed before the
collection itself is destructed. This is normally accomplished by declaring the Guard
within a compound statement so that it is automatically destructed when the
statement passes out of scope.

Collection Copy Constructor
If a new collection is created from an existing collection instance, the guards of the
existing collection have no effect on the new collection.

Return Codes and Exceptions
Since the Guard is constructed, there are no return codes. The Collection classes
use exceptions to indicate that a lock cannot be obtained. The user must code the
Guard constructor within a try/catch clause. When the Guard constructor fails and
the lock was not obtained for any reason, a C++ exception is thrown.

Deadlocks
In either of the above cases, you are responsible for the proper sequence of
obtaining the locks. There is no special code within the collection classes to prevent
the user from producing deadlocks.

“Chapter 8. Collection Classes Overview” on page 293
“Thread Safety and the Collection Classes” on page 350
“Open Class Threading Model” on page 47

“Insure Thread Safety with Guard Objects” on page 351
“Use Guard Objects”

Use Guard Objects
In a user program, a Guard is used in the following way to obtain a lock on a
specific collection:

ISet<char> my_set;
try
{

ISet<char>::Guard g(my_set);
my_set.add('x');

}
catch (IException& e)
{

// handle exception
}

The critical region, in this case the add method invoked on the ISet<char>, must be
specified within a C++ compound statement. On entry to the block, the Guard
constructor locks the collection that is specified as the Guard constructor parameter.
The destructor is executed when the scope of the block is left at the time the
collection is unlocked. The specified name of the Guard object (g in the above
example) is arbitrary and plays no role in the locking.

352 IOC Library User’s Guide

Depending on the number of threads of a particular user application, multiple Guard
objects may exist that work with the same collection object.

For the Restricted Access Collections and the Tree Collections, two similar Guard
classes and corresponding typedefs are added. They are exposed to the user
through the following typedefs on the level of appropriate concrete collections:
typedef IRestrictedAccessCollectionGuard<Element> guard;
typedef ITreeGuard<Element> guard;

In the event that the user invokes a Collection method that involves two or even
three collections, code such as the following must be used in order to achieve
thread-safe execution:

try
{

ISet<char>::Guard l1(my_set1);
ISet<char>::Guard l2(my_set2);
my_set1.addAllFrom(my_set2);

}
catch (IException& e)
{

// handle exception
}

In the case of three involved collections, the following code must be used:
try
{

ISet<char>::Guard l1(my_set1);
ISet<char>::Guard l2(my_set2);
ISet<char>::Guard l3(my_set3);
my_set1.addInterSection(my_set2,my_set3);

}
catch (IException& e)
{

// handle exception
}

In cases such as these, where multiple locks must be acquired, it is important that
each section of code that acquires the locks do so in the same order. Not doing so
can result in deadlocks.

The programmer does not need to include any new header files. The typedef for the
ISet coding samples illustrated above is provided by the standard include file iset.h.

“Chapter 8. Collection Classes Overview” on page 293
“Thread Safety and the Collection Classes” on page 350
“Open Class Threading Model” on page 47

“Insure Thread Safety with Guard Objects” on page 351
“Instantiate a Guard Object” on page 351

Support for Notifications
The Collection Classes include special classes that support notifications. For every
concrete flat collection class (for example ISequence), there is a corresponding
notification-enabled collection class (for example IVSequence).

Chapter 8. Collection Classes Overview 353

All collection methods that modify a collection send notifications to observers. The
class IVCollection defines four notification IDs for collection classes:

Notification ID Description

addId Sent if an element is added to the collection.

removeId Sent if an element is removed from the
collection.

replaceId Sent if an element is replaced in the
collection.

modifyId Sent if a collection is changed in any way
other than those mentioned above.

For notifications addId, removeId and replaceId, you can use
INotificationEvent::eventData to access event data generated by collections. This
event data is an object that includes a cursor method to access a collection cursor.
The cursor points to the element referred to by the modification method. For
example, if addId is the notification, the cursor points to the added element. The
replaceId notification also gives you access to a copy of the element that was
replaced.

Collection notifications addId, removeId and replaceId pass a pointer to the class
IVCollectionEventData.

For the notifications addId and modifyId, the library sends notification after the
modification occurs. For the notification removedId and replaceId the library sends
notification before the collection is changed, otherwise you would not be able to use
the cursor to refer to the element being removed.

Notifications are only sent if the collection is changed by the method. The following
methods do not create a notification:

v removeAll() for an empty collection

v add(), when add() does not actually add an element (for example, because the
element already exists in a unique collection, or because the collection is full)

v remove() if the element is not in the collection

v locateOrAdd() if the element is already in the collection

“Chapter 8. Collection Classes Overview” on page 293
“Addition, Removal, and Replacement of Elements” on page 318
“Event Notification” on page 63

“Use Collection Notification”
“Notify Observers Synchronously” on page 67

Use Collection Notification
The following example demonstrates the use of collection event data for a
sequence of IString objects. IString is the main string handling class provided by the
IBM Open Class Library.
#include <iobservr.hpp>
#include <inotifev.hpp>
#include <iseq.h>
#include <iostream>

354 IOC Library User’s Guide

template <class Notifier>
class Observer : public IObserver
{
public:

Observer(Notifier* notifier)
: ivNotifier(notifier)

{
handleNotificationsFor(*ivNotifier);

}

xObserver()
{

if (ivNotifier != 0)
stopHandlingNotificationsFor(*ivNotifier);

}

IObserver&
dispatchNotificationEvent(INotificationEvent const& event)
{

if (event.notificationId() == IVCollection::removeId)
{

std::cout << “IVCollection::removeId received” << std::endl;
}
else if (event.notificationId() == IVCollection::replaceId)
{

std::cout << “IVCollection::replaceId received” << std::endl;
}
else if (event.notificationId() == IVCollection::addId)
{

std::cout << “IVCollection::addId received” << std::endl;
}
else {

std::cout << “Unknown event received” << std::endl;
}

return *this;
}

private:
Notifier* ivNotifier;

};

int
main(int argc, char **argv)
{

IVSequence<long> seq;
IVSequence<long>::Cursor c(seq);
Observer<IVSequence<long> > observer(&seq);

seq.enableNotification();

seq.add(123,c);
std::cout << “element in collection: ”

<< seq.elementAt(c) << std::endl;
seq.replaceAt(c,456);
std::cout << “element in collection: ”

<< seq.elementAt(c) << std::endl;
seq.removeAt(c);
std::cout << “Number of elements in collection: ”

<< seq.numberOfElements() << std::endl;

return 0;
}

Chapter 8. Collection Classes Overview 355

“Chapter 8. Collection Classes Overview” on page 293
“Support for Notifications” on page 353
“Event Notification” on page 63

“Notify Observers Synchronously” on page 67

Collection Class Library Exceptions
Exceptions Defined and Used by the Collection Classes
The following is a hierarchy of the exceptions defined and used in the Collection
Classes. They all derive from IException, directly or indirectly.

v IException

– ICollectionResourceException

– ICollectionLockException

– ICollectionUnlockException

– ICollectionLockTimeOutException*

– IPreconditionViolation

- IChildAlreadyExistsException

- ICursorInvalidException

- ICyclicAttachException

- IEmptyException

- IFullException

- IIdenticalCollectionException

- IInvalidReplacementException

- IKeyAlreadyExistsException

- INotBoundedException

- INotContainsKeyException

- IPositionInvalidException

- IRootAlreadyExistsException

– IResourceExhausted

- IOutOfMemory

v IOutOfCollectionMemory

* The IBM Open Class collections only support time-out processing in the
Windows environment. (Time-out processing allows you to specify a time limit for
acquiring a resource lock.)

Exception Causes
A precondition of a called function is a condition that the function requires to be true
when it is called. The calling function must assure that this condition holds. The
called function implementation may assume that the condition holds without further
checking it. If a precondition does not hold, the called function’s behavior is
undefined.

If you want to make your programs more robust and to locate errors in the test
phase, the functions your program calls should check to ensure that their
preconditions hold. The Collection Class Library enables this checking through
macro definitions. Because this checking often requires significant overhead, it is

356 IOC Library User’s Guide

turned off by default. You need only use it while you are testing the system and
verifying that preconditions are always met. See Enable Exception Checking in the
Tasks section to learn how to turn this checking on and off.

A call to a function that violates the function’s preconditions has two possible
results:

v If the called function checks its preconditions, the function will throw an
exception.

v If the function does not check its preconditions, the behavior of the function is
undefined.

Precondition-Violations
The Collection Classes include the following precondition-violation exceptions:

Exception Description

IChildAlreadyExistsException Occurs when you try to add a child to a tree
using addAsChild at a position that already
contains a child.

ICursorInvalidException Two cursor properties may lead to the
ICursorInvalidException:

1. Every time a cursor is created, you must
specify the collection that it belongs to. If
a function takes a cursor as an argument
(such as add, setToFirst, and locate), the
function can only be applied to the
collection that the cursor belongs to. If
the function is applied to another
collection, the ICursorInvalidException
results.

2. If a function takes a cursor as an input
argument (such as elementAt, removeAt,
and replaceAt), the cursor must be valid.
A cursor is valid if it actually refers to
some element contained in the collection.
You can use the isValid function to
determine if a cursor is valid.

ICyclicAttachException Occurs when a function tries to attach a child
or a subtree at a position of a tree (using the
functions attachAsChild or
attachSubtreeAsChild, respectively) while
that child or subtree is the tree itself.

IEmptyException Occurs when a function tries to access an
element of an empty collection. Functions
that might cause this exception include
firstElement and removeFirstElement.

IFullException Occurs when a function tries to add an
element to a bounded collection that is
already full. Functions that might cause this
exception include add and addAsFirst.

IIdenticalCollectionException Occurs when the function addAllFrom is
called with the source collection being the
same as the target collection.

Chapter 8. Collection Classes Overview 357

Exception Description

IInvalidReplacementException Occurs when, during a replaceAt function,
the replacing element has different
positioning properties than the positioning
properties of the element to be replaced.

IKeyAlreadyExistsException Occurs when a function attempts to add an
element to a map or sorted map that already
has a different element with the same key.
Functions that might cause this exception
include add and addAllFrom.

INotBoundedException Occurs when the function
maxNumberOfElements is applied to a
collection that is not bounded.

INotContainsKeyException Occurs when the function elementWithKey is
applied to a collection that does not contain
an element with the specified key.

Other Exceptions
The following lists the causes of the other exceptions defined or used by the
Collection Classes:

Exception Description

IOutOfCollectionMemory Occurs when the collection classes cannot
allocate any memory for its data structures,
including pointers and cursors. This class
inherits from IOutOfMemory.

IPositionInvalidException Occurs when a function specifies a position
that is not valid in a collection. The functions
that might cause this exception include
elementAtPosition, removeAtPosition, and
setToPosition.

IRootAlreadyExistsException Occurs when the function addAsRoot is
called for a tree that already has a root.

ICollectionResourceException Occurs when the Collection is constructed
and the creation of the internal Resource
object fails.

ICollectionLockException Occurs when an internal lock request fails.

ICollectionUnlockException Occurs when an internal unlock request fails.

ICollectionLockTimeOutException Occurs when a time-out value is specified
during the construction of a Guard object and
the lock cannot be obtained within the
specified period of time.

Exceptions Caused by System Failures and Restrictions
System failures and restrictions are different from precondition violations. You
cannot usually anticipate them, and you have no opportunity to verify that such
situations, for example storage overflow, will not occur. These exceptions need to
be checked for, and an exception should be thrown if they occur.

“Chapter 8. Collection Classes Overview” on page 293
“Exceptions in the IBM Open Class” on page 259

358 IOC Library User’s Guide

“Enable Exception Checking”
“Troubleshoot Collection Class Problems” on page 360

Enable Exception Checking
Some preconditions are more difficult to check than others. Consider the following
possible preconditions:

1. A cursor for a linked collection implementation still points to an element of a
given collection.

2. A collection is not empty.

In the production version of a program, it may be less efficient to check the first
precondition than the second.

The Collection Class Library provides three levels of precondition checking. They
are selected by the following C-preprocessor macro definitions:

Macro Description

Default Perform all precondition checks, except the
check that a cursor actually points to an
element of the collection.

INO_CHECKS Check for memory overflow. Other checks
may be eliminated to improve performance.

IALL_CHECKS Perform all precondition checks, including the
(costly) check that a cursor actually points to
an element of the collection. This extra check
can only fail for undefined cursors.

Define the C-preprocessor macro to use them. You typically define them with the
appropriate compiler options.

“Chapter 8. Collection Classes Overview” on page 293
“Collection Class Library Exceptions” on page 356
“Exceptions in the IBM Open Class” on page 259

“Handle Exceptions with Cursors”
“Troubleshoot Collection Class Problems” on page 360

Handle Exceptions with Cursors
Exceptions are not generally used to change the flow of control of a program under
normal circumstances. An example of using exceptions under normal circumstances
is a function that iterates through a collection, and exits from the iteration by
checking for the exception that is thrown when an invalid cursor is used to access
elements. When the iteration is complete, the cursor will no longer be valid, and this
exception will be thrown. This is not a good programming practice. A function
should explicitly test for the cursor being valid. To make this possible, a function
must efficiently test this condition (isValid, for the cursor example).

Chapter 8. Collection Classes Overview 359

There are situations where the test for a condition can be done more efficiently in
combination with performing the actual function. In such cases, it is appropriate, for
performance reasons, to make the situation regular (that is, not exceptional) and
return the condition as a bool result.

Consider a function that first tests whether an element exists with a given key, and
then accesses it if it exits:
if (c.containsElementWithKey (key)) {

// ...
myElement = c.elementWithKey (key); // inefficient
// ...

}
else {

// ...
}

This solution is inefficient because the element is located twice, once to determine if
it is in the collection and once to access it. Consider the following example:
try {

// ...
myElement = c.elementWithKey (key); // bad: exception expected
// ...

}
catch (INotContainsKeyException) {

// ...
}

This solution is undesirable because an exception is used to change the flow of
control of the program. The correct solution is to obtain a cursor together with the
containment test, and then to use the cursor for a fast element access:
if (c.locateElementWithKey (key, cursor)) {

// ...
myElement = c.elementAt (cursor); // most efficient
// ...

}
else {

//...
}

“Chapter 8. Collection Classes Overview” on page 293
“Collection Class Library Exceptions” on page 356
“Exceptions in the IBM Open Class” on page 259
“Iteration” on page 334

“Enable Exception Checking” on page 359
“Troubleshoot Collection Class Problems”
“Locate and Access Elements with Cursors” on page 336
“Iterate over a Collection with Cursors” on page 337
“Iterate over a Collection with allElementsDo and Applicators” on page 339

Troubleshoot Collection Class Problems
The following table provides a short summary of problems you may encounter when
you use the Collection Class Library, and directs you to a section containing hints
for a solution.

360 IOC Library User’s Guide

Problem effect Problem area

Compilation Errors Indicating a Problem with
Constructors

Default constructor is missing

Compilation Errors Indicating that an Element
Type or Function Is Not Declared

Declaration of template arguments and
element functions not recognized

Compilation Errors about Multiple Definitions Header files may be included more than
once

Compiler Warning of an Error in istdops.h Global key function return value incorrect

Link or Bind Errors about Multiple Definitions Header files may be included more than
once

Link or Bind Error Indicating istdops.h No declaration of global key function

Unexpected Exception Tracing Output Trace function write is called whether or not
the related exception is caught

Unexpected Results when Adding an
Element to a Unique Key Collection

Global key function return value incorrect

Unexpected Results when Using Cursors Undefined cursor used

“Chapter 8. Collection Classes Overview” on page 293

Compilation Errors Indicating a Problem with Constructors
Effect
You get a compiler error about a constructor.

Reason
Compiler error messages indicating a problem with constructors for a collection are
typically related to the constructors defined for your element. Here the default
constructor for the element is missing.

Solution
Define the default constructor for the element class.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Troubleshoot Collection Class Problems” on page 360

Compilation Errors Indicating that an Element Type or Function is not
Declared

Effect
You get compiler messages when processing templates indicating that an element
type or one of its required element functions is not declared.

Reason
The element type or element function is defined locally to the source file that
contains the template instantiation with the element type as its argument. The

Chapter 8. Collection Classes Overview 361

prelink or prebind phase is executed only by using the header files. Therefore, your
declaration local to a source file is not recognized and causes these compilation
errors.

Solution
Move the corresponding declarations to a separate header file and include the
header file from the source file.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Troubleshoot Collection Class Problems” on page 360

Compilation Errors about Multiple Definitions
Effect
You get compilation errors from symbols being defined multiple times.

Reason
The template instantiation needs to include the type declarations it received as
arguments. Your header files containing type declarations used in template classes
may automatically be included several times.

Solution
Protect your header files against multiple inclusion by using the following
preprocessor macros at the beginning and end of your header files:
#ifndef _MYHEADER_H_
#define _MYHEADER_H_ 1

...

#endif

Where _MYHEADER_H_ is a string, unique to each header file, representing the
header file’s name.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Troubleshoot Collection Class Problems” on page 360

Compiler Warning of an Error in istdops.h
Effect
You get a compiler warning indicating a problem in istdops.h.

Reason
Compiler error messages indicating a problem in istdops.h are related to the
element and key-type functions that you must define for your elements. These
functions depend on the collection and implementation variant you are using.

Your global-name-space function key returns the key by value instead of by
reference. A temporary variable is created for the key within the operator-class

362 IOC Library User’s Guide

function key. The operator class function key returns the key by reference.
Returning a reference to a temporary variable causes unpredictable results.

The key function must return a reference and must also take a reference argument.
If the key function calls other functions to access the key, it must call those
functions with a reference to the object as an argument, and those functions must
return a reference to the key.

Solution
Verify that the global name-space function key correctly returns a key const&
instead of key.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Troubleshoot Collection Class Problems” on page 360

Link or Bind Errors about Multiple Definitions
Effect
You get link or bind errors from symbols being defined multiple times.

Reason
The template instantiation needs to include the type declarations it received as
arguments. Your header files containing type declarations used in template classes
might automatically be included several times.

Solution
Verify that you did not define functions in the header files that declare types used in
templates. If you did, you must move them from the header file into a separate
source file or make them inline.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Troubleshoot Collection Class Problems” on page 360

Link or Bind Error Indicating istdops.h
Effect
You are using a collection class with a key, and you get an error message during
the link or bind step indicating a problem in istdops.h.

Reason
You are using a collection class that requires the element class to provide a key
and you chose to use the method of using a global key function. You are using
collection class methods in a source file but the header file with the same name as
the source file does not contain a declaration (prototype) of the global key function.

While compiling the source file, which uses methods of the collection class, the
compiler has created or modified a temporary source file in the tempinc directory.
During the link or bind step, bind step, this source file is compiled to resolve

Chapter 8. Collection Classes Overview 363

references to template code. The error message you encounter refers to this
compilation. The source file in the tempinc directory contains include directives for
the collection class template code. It also contains include directives for a header
file of the same name as the source file that uses the collection class methods. The
template code in istdops.h requires that the global key function be known at
compilation time. The only file that is included at this time is the header file with the
same name as your source file. The problem is that the source file is not included
at this time, so a definition or declaration of the global key function in this file is not
recognized by the compiler.

Solution
You must declare the global key function in the header file with the same name as
the source file that uses the collection class methods. The definition of the global
key function should be in the source file. If you are not sure which header file is
meant by the message, look in the source file found in the tempinc directory.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301

“Troubleshoot Collection Class Problems” on page 360

Unexpected Exception Tracing Output
Effect
You get unexpected exception tracing output on standard error, even though the
related exception causing the output is caught.

Reason
For each exception raised, the write function of class IException::TraceFn is called
and writes information about the raised exception to standard error. This trace
function write is called whether the related exception is caught or not.

Solution
To suppress the trace output, provide your own IException::TraceFn::write tracing
function by subclassing IException::TraceFn and register the subclass with
setTraceFunction.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Exceptions in the IBM Open Class” on page 259

“Troubleshoot Collection Class Problems” on page 360
“Use Trace Macros” on page 269

Unexpected Results when Adding an Element to a Unique Key
Collection

Effect
You are adding an element into a unique key collection, such as a key set or a
map, and you are sure that the collection does not yet contain an element with the
same key. Nevertheless, you get unexpected results: IKeyAlreadyExistsException,
or the element is not added and the cursor is positioned to a different element.

364 IOC Library User’s Guide

Reason
This problem has the same cause as the problem described for Compiler Warning
of an Error in istdops.h. However, you did not get the warning message described
above, because you compiled with a lower warning level.

Solution
Verify that the global key function correctly returns a key const& instead of key.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Addition, Removal, and Replacement of Elements” on page 318

“Troubleshoot Collection Class Problems” on page 360
“Add an Element to a Collection” on page 320

Unexpected Results when Using Cursors
Effect
You get unexpected results when using cursors. For example, the elementAt
function fails for the given cursor or returns an unexpected element.

Reason
You have used an undefined cursor. Cursors become undefined when an element is
added to or removed from the collection.

Solution
Cursors that become undefined must be rebuilt with an appropriate operation (for
example, locate) before they are used again. Rebuilding is especially important for
removing all elements with a given property from a collection. Elements cannot be
removed by coding a cursor iteration. Use the removeAll function that takes a
predicate function as its argument.

“Chapter 8. Collection Classes Overview” on page 293
“Hierarchy and Design of the Collection Classes” on page 301
“Iteration” on page 334

“Troubleshoot Collection Class Problems” on page 360
“Locate and Access Elements with Cursors” on page 336
“Iterate over a Collection with Cursors” on page 337

Chapter 8. Collection Classes Overview 365

366 IOC Library User’s Guide

Chapter 9. Math

The IBinaryCodedDecimal Class
The IBinaryCodedDecimal class represents exact numerical quantities in business
and commercial applications for financial calculations.

IBM Open Class supports two formats of floating point data types: HEX and
IEEE.

The IBinaryCodedDecimal class allows representation of up to 31 significant digits,
including integral and fractional parts. The fractional part of a dollar can be
represented accurately by two digits following the decimal point. You do not have to
use floating-point arithmetic, which is more suitable for scientific and engineering
computations. These computations often use numbers much larger than the largest
that the IBinaryCodedDecimal object can store.

The same declarations and operators that you use on other data types, such as
float, can be applied to IBinaryCodedDecimal objects. You can declare typedefs,
arrays, and structures that have IBinaryCodedDecimal objects. You can apply
arithmetic, relational, assignment, comma, conditional, equality, logical, primary, and
unary operators on the IBinaryCodedDecimal object. You can pass
IBinaryCodedDecimal objects in function calls.

“Represent Numerical Quantities Using IBinaryCodedDecimal”
“Perform Calculations Using IBinaryCodedDecimal” on page 369
“Assign One IBinaryCodedDecimal to Another” on page 370
“Assign an IBinaryCodedDecimal to a long” on page 371
“Assign an IBinaryCodedDecimal to a double” on page 371

Represent Numerical Quantities Using IBinaryCodedDecimal
You can use the IBinaryCodedDecimal constructor to construct
IBinaryCodedDecimal objects or arrays of IBinaryCodedDecimal objects.When you
create a IBinaryCodedDecimal object, you can specify the following arguments:

v Number of significant digits: this number includes both integral and fractional
parts of the number.

v Precision: this describes the number of digits used in the fraction part.

v Value of your number.

There are five basic ways that you can construct an IBinaryCodedDecimal object:

1. Create an IBinaryCodedDecimal object with no arguments.
IBinaryCodedDecimal firstBCD();

This is the default constructor. The above example creates an object with a
value of zero, DFT_DIG number of digits (15), and precision of DFT_PREC
digits (5).

2. Create an IBinaryCodedDecimal object with one argument:
IBinaryCodedDecimal secondBCD(aNumber);

The above example creates an object with a value of aNumber. The number of
significant digits and precision depends on the data type of aNumber. For

© Copyright IBM Corp. 1996, 2001 367

example, The following line of code creates an IBinaryCodedDecimal object to
have a value of 12 with DFT_LNG_DIG number of digits (20) and number of
precisions (0):

IBinaryCodedDecimal exampleBCD(12L);

3. Create an IBinaryCodedDecimal object with a string:
IBinaryCodedDecimal thirdBCD(“12345.6789”);

The above example creates an object with a value of 12345.6789, nine
significant digits, and four digits of precision. Use this constructor if you want to
ensure accuracy. For example, the following line of code will store something
close to 12345.6789 (such as 12345.6788999999999). This behavior will vary
according to the floating type representation:

IBinaryCodedDecimal inaccurateBCD(12345.6789);

4. Create an IBinaryCodedDecimal object with two arguments:
IBinaryCodedDecimal fourthBCD(nDig, nPrec);

The above example creates an object with a value of zero, nDig number of
significant digits, and nPrec digits of precision.

5. Create an IBinaryCodedDecimal object with three arguments:
IBinaryCodedDecimal fifthBCD(nDig, nPrec, aNumber);

The above example creates an object with a value of aNumber, nDig number of
significant digits, and nPrec digits of precision. The following example shows
how to construct an IBinaryCodedDecimal object to have a value INT_MAX with
sixteen digits and five digits of precision.

IBinaryCodedDecimal example2BCD(16, 5, INT_MAX);

You may lose some precision during the conversion from a given data type to
IBinaryCodedDecimal when you create IBinaryCodedDecimal objects.

When you use the member function precisionOf() with an IBinaryCodedDecimal
object, you can find out the number of decimal digits in an IBinaryCodedDecimal
object:

int p;
IBinaryCodedDecimal x(5, 2);
p=x.precisionOf();
// The result is p=2

When you use the member function digitsOf() with an IBinaryCodedDecimal object,
you can find out the total number of digits in an IBinaryCodedDecimal object:

int n;
IBinaryCodedDecimal x(5, 2);
n = x.digitsOf();
// the result is n=5

The table below lists the binary coded decimal constants defined by the
IBinaryCodedDecimal class. You can find these constants in the idecimal.hpp file:

Constant name Description

DEC_DIG The maximum number of significant digits
(31) that IBinaryCodedDecimal can hold.

DFT_INT_DIG The default number of digits (10) for an
integer type.

368 IOC Library User’s Guide

Constant name Description

DEC_MIN The minimum value that
IBinaryCodedDecimal can hold.

DEC_MAX The maximum value that
IBinaryCodedDecimal can hold.

DEC_EPSILON The smallest incremental or decremental
value that IBinaryCodedDecimal can hold.

DFT_DIG The default number of digits (15) for the
default constructor.

DFT_PREC The default number of precision (5) for the
default constructor.

DFT_LNG_DIG The default number of digits (20) for a long
type.

“The IBinaryCodedDecimal Class” on page 367

“Perform Calculations Using IBinaryCodedDecimal”
“Assign One IBinaryCodedDecimal to Another” on page 370
“Assign an IBinaryCodedDecimal to a long” on page 371
“Assign an IBinaryCodedDecimal to a double” on page 371

Perform Calculations Using IBinaryCodedDecimal
The IBinaryCodedDecimal class defines a set of operators with the same
precedence as the corresponding real operators. With these operators, you can
code expressions on IBinaryCodedDecimal objects such as the expressions shown
in the example below:

IBinaryCodedDecimal value1(“123.78”);
IBinaryCodedDecimal value2(“345.12”);
IBinaryCodedDecimal value3(“77.457”);
IBinaryCodedDecimal Sum, Average;

Sum = value1 + value2;

Sum = Sum + value3;
// Sum should have value 546.357

Average = Sum / 3;
// Average should have value 182.119

The IDecimalDataError exception class is thrown whenever the integral part is
truncated as the result of any mathematical operation.

You can use the relational operators < > <= >= for IBinaryCodedDecimal objects
and compare IBinaryCodedDecimal objects with other arithmetic types (integer,
float, double, and long double):

IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

if (BCD_1 < BCD_2)
...

You can use equality operators with IBinaryCodedDecimal objects to compare
IBinaryCodedDecimal objects for equality:

Chapter 9. Math 369

IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

if (BCD_1 != BCD_2)
...

“The IBinaryCodedDecimal Class” on page 367

“Represent Numerical Quantities Using IBinaryCodedDecimal” on page 367
“Assign One IBinaryCodedDecimal to Another”
“Assign an IBinaryCodedDecimal to a long” on page 371
“Assign an IBinaryCodedDecimal to a double” on page 371

Convert Between IBinaryCodedDecimal and Other Numeric Types

Assign One IBinaryCodedDecimal to Another
If the value of an IBinaryCodedDecimal object that is to be converted to another
IBinaryCodedDecimal object is not within the range of values that can be
represented exactly, the value of the IBinaryCodedDecimal object to be converted is
truncated. If truncation occurs in the fractional part, there is no exception raised. If
assignment causes truncation in the integral part, then there is an exception in
which a IDecimalDataError object is thrown. This exception occurs when an integral
value is lost during conversion to a different type, regardless of what operation
requires the conversion:

IBinaryCodedDecimal targ_1(4,2);
IBinaryCodedDecimal targ_2(4,2);
IBinaryCodedDecimal op_1(“1234.56”);
IBinaryCodedDecimal op_2(“12.34”);

targ_1=op_1; // An exception is generated because the integral
// part is truncated; targ_1=(“34.56”).

targ_2=op_2; // No exception is generated because neither the
// integral nor the fractional part is truncated;
// targ_2=(“12.34”).

An exception occurs on assignment to a smaller target only when the integral part
is truncated.

When one IBinaryCodedDecimal object is assigned to another
IBinaryCodedDecimal object with a smaller precision, the result is truncation of the
fractional part:

IBinaryCodedDecimal x(“123.4567”);
IBinaryCodedDecimal y(7,1);

y = x; // y = (“123.4”)

When one IBinaryCodedDecimal object is assigned to another
IBinaryCodedDecimal object with a smaller integral part, the result is truncation of
the integral part. An exception occurs:

IBinaryCodedDecimal x(“123456.78”);
IBinaryCodedDecimal y(5,2);

y = x; // y = (“456.78”)

When one IBinaryCodedDecimal object is assigned to another
IBinaryCodedDecimal object with a smaller integral part, and smaller precision, the
result is truncation of the integral, and fractional parts. An exception occurs:

370 IOC Library User’s Guide

IBinaryCodedDecimal x(“123456.78”);
IBinaryCodedDecimal y(4,1);

y = x; // y = (“456.7”)

“The IBinaryCodedDecimal Class” on page 367

“Represent Numerical Quantities Using IBinaryCodedDecimal” on page 367
“Perform Calculations Using IBinaryCodedDecimal” on page 369
“Assign an IBinaryCodedDecimal to a long”
“Assign an IBinaryCodedDecimal to a double”

Assign an IBinaryCodedDecimal to a long
Convert an IBinaryCodedDecimal object with a fractional part to a long type:

long op;
IBinaryCodedDecimal op1(“12345.67”);
op = op1.asLong();

// Truncation on the fractional
// part. op=12345

Convert an IBinaryCodedDecimal object with less than 10 digits in the integral part
to a long type:

long op;
IBinaryCodedDecimal op2(“123”);
op = op2.asLong(); // No truncation; op=123

Convert an IBinaryCodedDecimal object with more than 10 digits in the integral part
to a long type:

long op2;
IBinaryCodedDecimal op3(“123456789012”);
op2 = op3.asLong();

// Truncation occurs on the integral
// part. op2=3456789012; Exception thrown.

“The IBinaryCodedDecimal Class” on page 367

“Represent Numerical Quantities Using IBinaryCodedDecimal” on page 367
“Perform Calculations Using IBinaryCodedDecimal” on page 369
“Assign One IBinaryCodedDecimal to Another” on page 370
“Assign an IBinaryCodedDecimal to a double”

Assign an IBinaryCodedDecimal to a double
To convert an IBinaryCodedDecimal object to a double-precision floating-point type
call the asDouble member function:

#include <idecimal.hpp>
#include <iostream.h>

int main(int argc, char **argv)
{

IBinaryCodedDecimal dec_1(“123.45”);
IBinaryCodedDecimal dec_2(“-123456.12345”);

double f1,f2;

Chapter 9. Math 371

f1=dec_1.asDouble();
f2=dec_2.asDouble();

cout <<"f1=" <<f1 <<endl <<"f2=" <<f2 <<endl <<endl;

return 0;
}

The following is the output of this example:
f1=123.45
f2=-123456

The representation of a float will not exactly match the value of the
IBinaryCodedDecimal object being converted.

“The IBinaryCodedDecimal Class” on page 367

“Represent Numerical Quantities Using IBinaryCodedDecimal” on page 367
“Perform Calculations Using IBinaryCodedDecimal” on page 369
“Assign One IBinaryCodedDecimal to Another” on page 370
“Assign an IBinaryCodedDecimal to a long” on page 371

The IDecimal Class

The IDecimal class represents numerical quantities accurately in business
and commercial applications for financial calculations. The IDecimal class is only
supported on z/OS.

z/OS C++ supports the decimal data type through the IBinaryCodedDecimal class
as well as the IDecimal class. Use the IDecimal class to improve the performance
of your applications relative to using the IBinaryCodedDecimal class. The IDecimal
class is compatible with the decimal data type in C. This class permits you to
represent up to 31 significant digits, including integral and fractional parts.

You can declare typedefs, arrays, and structures that have IDecimal objects. You
can apply arithmetic, relational, assignment, equality, and unary operators on the
IDecimal object. You can pass IDecimal objects in function calls.

“Exceptions Thrown by IDecimal Objects” on page 375
“Intermediate Sizes of IDecimal Objects” on page 376

“Construct IDecimal Objects”
“Perform Operations on IDecimal Objects” on page 373
“Convert IDecimal Objects” on page 374

Construct IDecimal Objects
You can use the IDecimal constructor to construct IDecimal objects or arrays

of IDecimal objects. Use the template specifier IDecimal<w, p> to declare IDecimal
objects. The template specifier IDecimal<w, p> designates a decimal number with w
digits, and p decimal places. In the specifier, w is the total number of digits for the
integral and decimal parts combined. p is the number of digits for the decimal part

372 IOC Library User’s Guide

only. For example, IDecimal<5,2> represents a number, such as 123.45, where w =
5 and p = 2. Specifying the value for p is optional. If omitted, z/OS C++ creates a
default value of 0 for p.

In the specifier, w and p have a range of allowed values according to the following
rules:

v 1 <= w <= 31

v 0 <= p <= w

You can construct a IDecimal object using an integer, a char*, a IDecimal object, or
another IBinaryCodedDecimal object. The following example shows how you can
construct a IDecimal type:
IDecimal<10,2> x(“4.67”); // char *
IDecimal<5,0> y(7); // integer
IDecimal<5> z = y; // another IDecimal object
IDecimal<18,10> *ptr; // pointer
IDecimal<8,2> arr[100]; // array
IBinaryCodedDecimal a(12); // another IBinaryCodedDecimal object
IDecimal<10,3> b(a); // IDecimal object

In the previous example:

v x has a value of +4.67.

v y and z have a value of +7.

v ptr is a pointer to type IDecimal<18,10>.

v arr is an array of 100 elements, where each element is of type IDecimal<8,2>.

v b has the value of the IDecimal object a, +12.

Header File
You must include this statement in any file that uses the IDecimal class:
#include <idecimal.hpp>

The file must be included before any use of the IDecimal object.

“The IDecimal Class” on page 372

“Perform Operations on IDecimal Objects”
“Convert IDecimal Objects” on page 374

Perform Operations on IDecimal Objects
The following applies to the z/OS.

Arithmetic Operators
The IDecimal class defines a set of arithmetic operators with the same precedence
as the corresponding non-overloaded operators. With these operators, you can
perform arithmetic calculations between two IDecimal objects, or between a
IDecimal object and an integer.
IDecimal<5,2> x(“9.45”);
IDecimal<8,3> y(-3);
IDecimal<20,13> sum = x + y;

Chapter 9. Math 373

Relational Operators
You can use the relational operators <, >, <=, and >= for IDecimal objects. You can
compare two IDecimal objects, or a IDecimal object with an integer:
IDecimal<5,2> x(“10.0”);
IDecimal<8,3> y(“-2.3”);
if (x < y) {

// ...
}

Equality Operators
You can use the equality operators != and == for IDecimal objects. You can
compare two IDecimal objects or a IDecimal object with an integer for equality:

IDecimal<5,2> x(15);
IDecimal<5,2> y(-15);
if (x != y) {

// ...
}

Number of Digits in a IDecimal Object
When you use the member function digitsOf() with a IDecimal object, you can find
out the total number of digits w in a IDecimal object:

int w;
IDecimal<5,2> x;
w = x.digitsOf(); //the result is w=5

Precision of an IDecimal Object
When you use the member function precisionOf() with a IDecimal object, you can
find out the number of decimal digits p in a IDecimal object:

int p; IDecimal<5,2> x; p = x.precisionOf(); //The result is p=2

IDecimal Class Input and Output
You can use the input and output operators for the USL I/O Stream Library to
perform input and output operations on IDecimal objects.

“The IDecimal Class” on page 372
“Chapter 4. USL I/O Streaming” on page 93

“Construct IDecimal Objects” on page 372
“Convert IDecimal Objects”

Convert IDecimal Objects
The IDecimal class defines a set of conversion operators and functions.

With these operators and functions, you can convert IDecimal objects to and from
other data types.

If the value that is to be converted is not within the range of values that can be
represented exactly, then this value will be truncated. If truncation occurs in the
fractional part, no exception is raised. If assignment causes truncation in the
integral part, then the IDecimal class raises an exception. This exception occurs
when an integral value is lost during conversion to a different type, regardless of the
operation that requires the conversion.

374 IOC Library User’s Guide

IDecimal Object to a IDecimal Object
The following is an example of converting a IDecimal object to another IDecimal
object:

IDecimal <5,2> x(3);
IDecimal <31,15> y;
y = x;

IDecimal Object to an IString Object
The IBM Open Class Library provides a member function, asString(), to convert a
IDecimal object to an IString object. The following is an example of such a
conversion:

IDecimal<5,2> x(“3.46”);
IString y = x.asString();

IDecimal Object from a char * Type
The following is an example of converting a char *type to a IDecimal object:

char *x = “1234.5”;
IDecimal<5,2> y;
y = x;

IDecimal Object from an Integer Type
The following is an example of converting an integer to a IDecimal object:

int x = 3;
IDecimal<3,1> y = x;

IDecimal Object to and from IBinaryCodedDecimal Object
The following is an example of converting a IDecimal object from an
IBinaryCodedDecimal object:

IBinaryCodedDecimal y(12);
IDecimal<5,2> x(y);

The IBM Open Class Library provides a member function, asBCD(), to convert a
IDecimal object to an IBinaryCodedDecimal object. The following is an example of
such a conversion:

IDecimal<5,2> x(“3.46”);
IBinaryCodedDecimal y = x.asBCD();

“The IDecimal Class” on page 372

“Construct IDecimal Objects” on page 372
“Perform Operations on IDecimal Objects” on page 373

Exceptions Thrown by IDecimal Objects
z/OS C++ decimal instructions produce the following exceptions:

Data exception (interrupt code hex ’7’)
This may be caused by invalid sign or digit codes in a packed decimal number
operated on by packed decimal instructions.

Decimal-overflow exception (interrupt code hex ’A’)
This exception may be caused when nonzero digits are lost because the destination
field in a decimal operation is too short to contain the result:
CEE3210S The system detected a Decimal-overflow exception.

Chapter 9. Math 375

Decimal-divide exception (interrupt code hex ’B’)
This exception may be caused when, in decimal division, the divisor is zero, or the
quotient exceeds the specified data-field size. The decimal divide is indicated if the
sign codes of both the divisor and dividend are valid, and if the digit or digits used
in establishing the exception are valid.

The following unhandled divide message does not distinguish between a
decimal-divide condition and a fixed divide-by-zero condition:
CEE3211S The system detected a Decimal-divide exception.

Both are mapped into the same error message: CLE1202 Data overflow error.

SIGFPG exception
During the conversion of char *to the IDecimal object, there is a possibility that the
value of the integer part cannot be represented by the decimal type. In that case,
the result of the conversion is undefined and z/OS C ++ raises a SIGFPG
exception.

“The IDecimal Class” on page 372

“Construct IDecimal Objects” on page 372
“Perform Operations on IDecimal Objects” on page 373
“Convert IDecimal Objects” on page 374

Intermediate Sizes of IDecimal Objects
Use one of the following tables to calculate the size of the result of a

IDecimal object operation.

Both tables assume the following:

v x has type IDecimal<w1, p1>

v y has type IDecimal<w2, p2>

v IDecimal<w, p> is the resulting type

The following table assumes no overflow:

Expression <w, p>

x * y w = w1 + w2

p = p1 + p2

x / y w = 31

p = 31 - ((w1 - p1) + p2)

x + y p = max(p1, p2)

w = max(w1 - p1, w2 - p2) + p + 1

x - y same rule as addition

You can use the following table to calculate the size of the result whether or not
there is an overflow:

376 IOC Library User’s Guide

Expression <w, p>

x * y w = min(w1 + w2, 31)

p = min(p1 + p2, 31 - min((w1 - p1) + (w2 + p2), 31))

x / y w = 31

p = max(31 - ((w1 - p1) + p2), 0)

x + y ir = min(max(w1 - p1, w2 - p2) + 1, 31)

p = min(max(p1 - p2), 31 - ir)

w = ir + p

x - y same rule as addition

“The IDecimal Class” on page 372

“Construct IDecimal Objects” on page 372
“Perform Operations on IDecimal Objects” on page 373
“Convert IDecimal Objects” on page 374

Complex Mathematics Library Overview
The Complex Mathematics Library provides you with the facilities to manipulate
complex numbers and to perform standard mathematical operations on them. This
library is comprised of two classes:

v complex is the class that lets you manipulate complex numbers

v c_exception is the class that you use to handle errors created by the functions
and operations in the complex class.

The Complex Mathematics Library provides you with the following functionality:

v Mathematical operators with the same precedence as the corresponding real
operators. With these operators, you can code expressions on complex numbers.

v Mathematical, trigonometric, magnitude, and conversion functions as friend
functions of complex objects.

v Predefined mathematical constants.

v Input and output operators for USL I/O Stream Library input and output: Complex
numbers are written to the output stream in the format (real,imag). Complex
numbers are read from the input stream in one of two formats: (real,imag) or
real.

v The c_exception class to handle errors. You can also define your own version of
the error handling function.

“Review of Complex Numbers” on page 378
“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Mathematical Operators for complex” on page 380
“Friend Functions for complex” on page 382
“Input and Output Operators for complex” on page 385
“Error Functions” on page 387

Chapter 9. Math 377

“Construct complex Objects” on page 379
“Handle complex Mathematics Errors” on page 388
“Example: Calculate Roots” on page 390
“Example: Use Equality and Inequality Operators” on page 391

Review of Complex Numbers
A complex number is made up of two parts: a real part and an imaginary part. A
complex number can be represented by an ordered pair (a, b), where a is the value
of the real part of the number and b is the value of the imaginary part. If (a, b) and
(c,d) are complex numbers, then the following statements are true:

v (a, b) + (c, d) = (a + c, b + d)

v (a, b) - (c, d) = (a - c, b - d)

v (a, b) * (c, d) = (ac - bd, ad + bc)

v (a, b) / (c, d) = ((ac + bd) / (c|2 + d|2), (bc - ad) / (c|2 + d|2))

v The conjugate of a complex number (a,b) is (a,-b)

v The absolute value or magnitude of a complex number (a,b) is the positive
square root of the value a|2 + b|2

v The polar representation of (a, b) is (r, theta), where r is the distance from the
origin to the point (a, b) in the complex plane, and theta is the angle from the
real axis to the vector (a, b) in the complex plane. The angle theta can be
positive or negative. The following figure illustrates the polar representation
(r,theta) of the complex number (a, b).

“Complex Mathematics Library Overview” on page 377
“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Mathematical Operators for complex” on page 380

378 IOC Library User’s Guide

“Friend Functions for complex” on page 382
“Input and Output Operators for complex” on page 385
“Error Functions” on page 387

“Construct complex Objects”
“Example: Calculate Roots” on page 390
“Example: Use Equality and Inequality Operators” on page 391

Header Files and Constants for the complex and c_exception Classes
To use the complex or c_exception classes, you must:

v Include the following statement in any file using these classes:
#include <complex.h>

Constants Defined in complex.h
The following table lists the mathematical constants that the Complex Mathematics
Library defines.

Constant Name Description

M_E The constant e

M_LOG2E The logarithm of e to the base 2

M_LOG10E The logarithm of e to the base 10

M_LN2 The natural logarithm of 2

M_LN10 The natural logarithm of 10

M_PI π (pi)

M_PI_2 π (pi) divided by two

M_PI_4 π (pi) divided by four

M_1_PI 1/ π (1/pi)

M_2_PI 2/ π (2/pi)

M_2_SQRTPI 2 divided by the square root of π (pi)

M_SQRT2 The square root of 2

M_SQRT1_2 The square root of 1/2

“Complex Mathematics Library Overview” on page 377
“Review of Complex Numbers” on page 378
“Mathematical Operators for complex” on page 380
“Friend Functions for complex” on page 382
“Input and Output Operators for complex” on page 385
“Error Functions” on page 387

“Construct complex Objects”

Construct complex Objects
You can use the complex constructor to construct initialized or uninitialized complex
objects or arrays of complex objects. The following example shows different ways of
creating and initializing complex objects:

Chapter 9. Math 379

complex comp1; // Initialized to (0, 0)
complex comp2(3.14); // Initialized to (3.14, 0)
complex comp3(3.14,2.72); // Initialized to (3.14, 2.72)
complex comparr1[3]={

1.0, // Initialized to (1.0, 0)
complex(2.0,-2.0), // (2.0, -2.0)
3.0 // (3.0, 0)
};

complex comparr2[3]={
complex(1.0,1.0), // Initialized to (1.0, 1.0)
2.0, // (2.0, 0)
complex(3.0,-3.0) // (3.0, -3.0)
};

complex comparr3[3]={
1.0, // Initialized to (1.0, 0)
complex(M_PI_4,M_SQRT2), // (0.785..., 1.414...)
M_SQRT1_2 // (0.707..., 0)
};

“Complex Mathematics Library Overview” on page 377
“Header Files and Constants for the complex and c_exception Classes” on
page 379

“Use complex Input and Output Operators” on page 386
“Use Mathematical Operators for complex” on page 381
“Use Friend Functions with complex” on page 383

Mathematical Operators for complex
The complex class defines a set of mathematical operators with the same
precedence as the corresponding real operators. With the following operators, you
can code expressions on complex numbers:

v operator + (addition)

v operator * (multiplication)

v operator - (negation)

v operator - (subtraction)

v operator / (division)

v operator += (assignment)

v operator -= (assignment)

v operator *= (assignment)

v operator /= (assignment)

v operator == (equality)

v operator != (inequality)

The complex mathematical assignment operators (+=, -=, *=, /=) do not produce a
value that can be used in an expression. The following code, for example, produces
a compile-time error:

complex x, y, z; // valid declaration
x = (y += z); // invalid assignment causes

// a compile-time error

The equality and inequality operators test for an exact equality between the real
parts of two numbers, and between their complex parts. Because both components
are double values, two numbers may be “equal” within a certain tolerance, but

380 IOC Library User’s Guide

unequal as far as these operators are concerned. If you want an equality or
inequality operator that can test for an absolute difference within a certain tolerance
between the two pairs of corresponding components, you should define your own
equality functions rather than use the equality and inequality operators of the
complex class.

“Complex Mathematics Library Overview” on page 377
“Review of Complex Numbers” on page 378
“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Friend Functions for complex” on page 382
“Input and Output Operators for complex” on page 385
“Error Functions” on page 387

“Use Mathematical Operators for complex”

Use Mathematical Operators for complex
With these operators, you can code expressions on complex numbers such as the
expressions shown in the example below. In the example, for each complex scalar
x, the comments showing the results of operations use xr to denote the scalar’s real
part and xi to denote the scalar’s imaginary part.

// Using the complex mathematical operators

#include <complex.h>
#include <iostream.h>

complex a,b,c,d,e,f,g;

int main(int argc, char *argv[])
{

cout << “Enter six complex numbers, separated by spaces:\n”;
cin >> b >> c >> d >> e >> f >> g;

// assignment, multiplication, addition
a=b*c+d; // a=((br*cr)-(bi*ci)+dr , (br*ci)+(bi*cr)+di)

// division
a=b/d; // a=((br*dr)+(bi*di) / ((br*br)+(bi*bi),

// (bi*dr)-(br*di) / ((br*br)+(bi*bi))

// subtraction
a=b-f; // a=((br-fr), (bi-fi))

// equality, multiplication assignment
if (a==f) c*=e; // same as c=c*e;

// inequality, addition assignment
if (b!=f) d+=g; // same as d=d+g;

cout << “Here are the seven numbers after calculations:\n”
<< “a=” << a << '\n'
<< “b=” << b << '\n'
<< “c=” << c << '\n'
<< “d=” << d << '\n'
<< “e=” << e << '\n'
<< “f=” << f << '\n'
<< “g=” << g << endl;

return 0;
}

Chapter 9. Math 381

This example produces the output shown below in regular type, given the input
shown in bold:

Enter six complex numbers, separated by spaces:
(1.14,2.28) (2.24,4.48) (1.17,12.18)
(4.4444444,5.12341) (12,7) 5
Here are the seven numbers after calculations:
a=(-10.86, -4.72)
b=(1.14, 2.28)
c=(2.24, 4.48)
d=(6.17, 12.18)
e=(4.44444, 5.12341)
f=(12, 7)
g=(5, 0)

Note that there are no increment or decrement operators for complex numbers.

“Complex Mathematics Library Overview” on page 377
“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Mathematical Operators for complex” on page 380

“Construct complex Objects” on page 379
“Use complex Input and Output Operators” on page 386
“Use Friend Functions with complex” on page 383

Friend Functions for complex
The complex class defines a set of mathematical, trigonometric, magnitude, and
conversion functions as friend functions of complex objects. They are:

v exp (exponent)

v log (natural logarithm)

v pow (power)

v sqrt (square root)

v cos (cosine)

v cosh (hyperbolic cosine)

v sin (sine)

v sinh (hyperbolic sine)

v abs (absolute value or magnitude)

v norm (square of magnitude)

v arg (polar angle)

v conj (conjugate)

v polar (polar to complex)

v real (real part)

v imag (imaginary part)

“Complex Mathematics Library Overview” on page 377
“Review of Complex Numbers” on page 378
“Header Files and Constants for the complex and c_exception Classes” on
page 379

382 IOC Library User’s Guide

“Mathematical Operators for complex” on page 380
“Input and Output Operators for complex” on page 385
“Error Functions” on page 387

“Use Friend Functions with complex”

Use Friend Functions with complex
The complex class defines a set of mathematical, trigonometric, magnitude and
conversion functions as friend functions of complex objects. Because these
functions are friend functions rather than member functions, you cannot use the dot
or arrow operators. For example:

complex a, b, *c;

a - exp(b); //correct - exp() is a friend function of complex
a = b.exp(); //error - exp() is not a member function of complex
a = c -> exp(); //error - exp() is not a member function of complex

Use Friend Functions for complex
The complex class defines four mathematical functions as friend functions of
complex objects.

v exp - Exponent

v log - Logarithm

v pow - Power

v sqrt - Square Root

The following example shows uses of these mathematical functions:
// Using the complex mathematical functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])
{

complex a, b;
int i;
double f;
//
// prompt the user for an argument for calls to
// exp(), log(), and sqrt()
//
cout << “Enter a complex value\n”;
cin >> a;
cout << “The value of exp() for ” << a << “ is: ” << exp(a)

<< “\nThe natural logarithm of ” << a << “ is: ” << log(a)
<< “\nThe square root of ” << a << “ is: ” << sqrt(a) << “\n\n”;

//
// prompt the user for arguments for calls to pow()
//
cout << “Enter 2 complex values (a and b), an integer (i),”

<< “ and a floating point value (f)\n”;
cin >> a >> b >> i >> f;
cout << “a is ” << a << “, b is ” << b << “, i is ” << i

<< “, f is ” << f << '\n'
<< “The value of f**a is: ” << pow(f, a) << '\n'
<< “The value of a**i is: ” << pow(a, i) << '\n'
<< “The value of a**f is: ” << pow(a, f) << '\n'
<< “The value of a**b is: ” << pow(a, b) << endl;

return 0;
}

Chapter 9. Math 383

This example produces the output shown below in regular type, given the input
shown in bold:

Enter a complex value
(3.7,4.2)
The value of exp() for (3.7, 4.2) is: (-19.8297, -35.2529)
The natural logarithm of (3.7, 4.2) is: (1.72229, 0.848605)
The square root of (3.7, 4.2) is: (2.15608, 0.973992)

Enter 2 complex values (a and b), an integer (i), and a floating point value (f)
(2.6,9.39) (3.16,1.16) -7 33.16237
a is (2.6, 9.39), b is (3.16, 1.16), i is -7, f is 33.1624
The value of f**a is: (972.681, 8935.53)
The value of a**i is: (-1.13873e-07, -3.77441e-08)
The value of a**f is: (4.05451e+32, -4.60496e+32)
The value of a**b is: (262.846, 132.782)

Use Trigonometric Functions for complex
The complex class defines four trigonometric functions as friend functions of
complex objects.

v cos - Cosine

v cosh - Hyperbolic cosine

v sin - Sine

v sinh - Hyperbolic sine

The following example shows how you can use some of the complex trigonometric
functions:

// Complex Mathematics Library trigonometric functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])

{
complex a = (M_PI, M_PI_2); // a = (pi,pi/2)
// display the values of cos(), cosh(), sin(), and sinh()
// for (pi,pi/2)
cout << “The value of cos() for (pi,pi/2) is: ” << cos(a) << '\n'

<< “The value of cosh() for (pi,pi/2) is: ” << cosh(a) << '\n'
<< “The value of sin() for (pi,pi/2) is: ” << sin(a) << '\n'
<< “The value of sinh() for (pi,pi/2) is: ” << sinh(a) << endl;

return 0;
}

This program produces the following output:
The value of cos() for (pi,pi/2) is: (6.12323e-17, 0)
The value of cosh() for (pi,pi/2) is: (2.50918, 0)
The value of sin() for (pi,pi/2) is: (1, -0)
The value of sinh() for (pi,pi/2) is: (2.3013, 0)

Use Magnitude Functions for complex
The magnitude functions for complex are:

v abs - Absolute value

v norm - Square magnitude

Use Conversion Functions for complex
The conversion functions in the Complex Mathematics Library allow you to convert
between the polar and standard complex representations of a value and to extract
the real and imaginary parts of a complex value.

384 IOC Library User’s Guide

The complex class provides the following conversion functions as friend functions of
complex objects:

v arg - angle in radians

v conj - conjugation

v polar - polar to complex

v real -extract to real part

v imag - extract imaginary part

The following program shows how to use complex conversion functions:
// Using the complex conversion functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])
{

complex a;

//for a value supplied by the user, display the real part,
//the imaginary part, and the polar representation.

cout << “Enter a complex value” << endl;

cin >> a;

cout << “The real part of this value is ” << real(a) << endl;
cout << “The imaginary part of this value is ” << imag(a) << endl;
cout << “The polar representation of this value is ”

<< “(” <<abs(a) << “,” << arg(a) << “)” <<endl;
return 0;

}

This example produces the output shown below, given the input shown in bold:
Enter a complex value
(175,162)
The real part of this value is 175
The imaginary part of this value is 162
The polar representation of this value is (238.472,0.746842)

“Complex Mathematics Library Overview” on page 377
“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Friend Functions for complex” on page 382

“Construct complex Objects” on page 379
“Use complex Input and Output Operators” on page 386
“Use Mathematical Operators for complex” on page 381

Input and Output Operators for complex
The complex class defines input and output operators for USL I/O Stream Library:

v operator >> (input)

v operator << (output)

Complex numbers are written to the output stream in the format (real,imag).
Complex numbers are read from the input stream in one of two formats: (real,imag)
or real.

Chapter 9. Math 385

“Complex Mathematics Library Overview” on page 377
“Review of Complex Numbers” on page 378
“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Mathematical Operators for complex” on page 380
“Friend Functions for complex” on page 382
“Error Functions” on page 387

“Use complex Input and Output Operators”

Use complex Input and Output Operators
The following example demonstrates the use of complex input and output operators:
// An example of complex input and output

#include <complex.h> // required for use of Complex Mathematics Library
#include <iostream.h> // required for use of I/O Stream input and output

int main(int argc, char *argv[]) {
complex a [3]={1.0,2.0,complex(3.0,-3.0)};
complex b [3];
complex c [3];
complex d;

// read input for all of arrays b and c
// (you must specify each element individually)

cout << “Enter three complex values separated by spaces:” << endl;
cin >> b[0] >> b[1] >> b[2];
cout << “Enter three more complex values:” << endl;
cin >> c[2] >> c[0] >> c[1];

// read input for scalar d
cout << “Enter one more complex value:” << endl;
cin >> d;

// Note that you cannot use the above notation for arrays.
// For example, cin >> a; is incorrect because a is a complex array.
// Display each array of three complex numbers, then the complex scalar

cout << “Here are some elements of arrays a,b,and c:\n”
<< a[2] << endl
<< b[0] << b[1] << b[2] << endl
<< c[1] << endl
<< “Here is scalar d: ”
<< d << endl

// cout << a produces an address, not a list of array elements:
<< “Here is the address of array a:” << endl
<< a
<< endl; //endl flushes the output stream

return 0;
}

This example produces the output shown below in regular type, given the input
shown in bold. Notice that you can insert white space within a complex number,
between the brackets, numbers, and comma. However, you cannot insert white
space within the real or imaginary part of the number. The address displayed may
be different, or in a different format, than the address shown, depending on the
operating system, hardware, and other factors:

386 IOC Library User’s Guide

Enter three complex values separated by spaces:
38 (12.2,3.14159) (1712,-33)
Enter three more complex values:
(17.1234 , 1234.17) (27, 12) (-33 ,0)
Enter one more complex value:
17
Here are some elements of arrays a,b,and c:
(3, -3)
(38, 0)(12.2, 3.14159)(1712, -33)
(-33, 0)
Here is scalar d:(17, 0)
Here is the address of array a:
0x2ff21cc0

“Complex Mathematics Library Overview” on page 377
“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Input and Output Operators for complex” on page 385
“Chapter 4. USL I/O Streaming” on page 93

“Construct complex Objects” on page 379
“Use Mathematical Operators for complex” on page 381
“Use Friend Functions with complex” on page 383
“Combine Input and Output of Different Types” on page 126
“Receive Input from Standard Input” on page 115
“Display Output on Standard Output or Standard Error” on page 118

Error Functions
There are three recommended methods to handle complex mathematics errors:

v use the c_exception class

v define a customized complex_error function

v handle errors outside of the complex mathematics library

Using the c_exception Class
The c_exception class lets you handle errors that are created by the functions and
operations in the complex class. When the Complex Mathematics Library detects an
error in a complex operation or function, it invokes complex_error(). This friend
function of c_exception has a c_exception object as its argument. When the
function is invoked, the c_exception object contains data members that define the
function name, arguments, and return value of the function that caused the error, as
well as the type of error that has occurred. If you do not define your own
complex_error function, complex_error sets the complex return value and the errno
error number.

Defining a Customized complex_error Function
You can either use the default version of complex_error() or define your own
version of the function. If you define your own complex_error() function, and this
function returns a nonzero value, no error message will be generated.

Handling Errors Outside of the Complex Mathematics Library
There are some cases where member functions of the Complex Mathematics
Library call functions in the math library. These calls can cause underflow and

Chapter 9. Math 387

overflow conditions that are handled by the matherr() function that is declared in the
math.h header file. For example, the overflow conditions that are caused by the
following calls are handled by matherr():

v exp(complex(DBL_MAX, DBL_MAX))

v pow(complex(DBL_MAX, DBL_MAX), INT_MAX)

v norm(complex(DBL_MAX, DBL_MAX))

DBL_MAX is the maximum valid double value, and is defined in float.h. INT_MAX is
the maximum int value, and is defined in limits.h.

If you do not want the default error-handling defined by matherr(), you should define
your own version of matherr().

“Complex Mathematics Library Overview” on page 377
“Review of Complex Numbers” on page 378
“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Mathematical Operators for complex” on page 380
“Friend Functions for complex” on page 382
“Input and Output Operators for complex” on page 385

“Handle complex Mathematics Errors”

Handle complex Mathematics Errors
You can use one of the following methods to handle complex mathematics errors:

v use the c_exception class

v define a customized complex_error function

v compile a program that uses a customized complex_error function

Use c_exception to Handle complex Mathematics Errors
The c_exception class is not related to the C++ exception handling mechanism that
uses the try, catch, and throw statements.

The c_exception class lets you handle errors that are created by the functions and
operations in the complex class. When the Complex Mathematics Library detects an
error in a complex operation or function, it invokes complex_error(). This friend
function of c_exception has a c_exception object as its argument. When the
function is invoked, the c_exception object contains data members that define the
function name, arguments, and return value of the function that caused the error, as
well as the type of error that has occurred. The data members are as follows:

complex arg1; // First argument of the
// error-causing function

complex arg2; // Second argument of the
// error-causing function

char* name; // Name of the error-causing function
complex retval; // Value returned by default

// definition of complex_error
int type; // The type of error that has occurred.

If you do not define your own complex_error function, complex_error sets the
complex return value and the errno error number.

388 IOC Library User’s Guide

Define a Customized complex_error Function
You can either use the default version of complex_error() or define your own
version of the function.

When defining your own version of the
complex_error() function, you must link your application to the static version of the
complex library.

In the following example, complex_error() is redefined:
// Redefinition of the complex_error function

#include <iostream.h>
#include <complex.h>
#include <float.h>

int complex_error(c_exception &c)
{

cout << “================” << endl;
cout << “ Exception ” << endl;
cout << “type = ” << c.type << endl;
cout << “name = ” << c.name << endl;
cout << “arg1 = ” << c.arg1 << endl;
cout << “arg2 = ” << c.arg2 << endl;
cout << “retval = ” << c.retval << endl;
cout << “================” << endl;
return 0;

}

int main(int argc, char *argv[])
{

complex c1(DBL_MAX,0);
complex result;
result = exp(c1);
cout << “exp” << c1 << “= ” << result << endl;
return 0;

}

This example produces the following output:
================

Exception
type = 3
name = exp
arg1 = (1.79769e+308, 0)
arg2 = (0, 0)
retval = (infinity, -infinity)
================
exp(1.79769e+308, 0)= (infinity, -infinity)

If the redefinition of complex_error() in the above code is commented out, the
default definition of complex_error() is used, and the program produces the
following output:

exp(7.23701e+75, 0) = (7.23701e+75, -7.23701e+75)

Compile a Program that Uses a Customized complex_error Function
If you define your own version of complex_error, you must ensure that the name of
the header file that contains your version of the complex_error is included in your
source file when you compile you program.

“Complex Mathematics Library Overview” on page 377

Chapter 9. Math 389

“Header Files and Constants for the complex and c_exception Classes” on
page 379
“Error Functions” on page 387

Example: Calculate Roots
The following example shows how you can use the complex Mathematics Library to
calculate the roots of a complex number. For every positive integer n, each complex
number z has exactly n distinct nth roots. Suppose that in the complex plane the
angle between the real axis and point z is theta, and the distance between the
origin and the point z is r. Then z has the polar form (r, theta), and the n roots of z
have the values:
sigma
sigma x omega
sigma x omega|2
sigma x omega|3
.
.
.
sigma x omega|(n - 1)

where omega is a complex number with the value:
omega = (cos(2pi / n), sin(2pi / n))

and sigma is a complex number with the value:
sigma = r|(1/n) (cos(theta / n), sin(theta / n))

The following code includes two functions, get_omega() and get_sigma(), to
calculate the values of omega and sigma. The user is prompted for the complex
value z and the value of n. After the values of omega and sigma have been
calculated, the n roots of z are calculated and printed.

// Calculating the roots of a complex number

#include <iostream.h>
#include <complex.h>
#include <math.h>

// Function to calculate the value of omega for a given value of n

complex get_omega(double n)

{
complex omega = complex(cos((2.0*M_PI)/n), sin((2.0*M_PI)/n));
return omega;

}

// function to calculate the value of sigma for a given value of
// n and a given complex value

complex get_sigma(complex comp_val, double n)
{

double rn, r, theta;
complex sigma;
r = abs(comp_val);
theta = arg(comp_val);
rn = pow(r,(1.0/n));
sigma = rn * complex(cos(theta/n),sin(theta/n));
return sigma;

}

int main(int argc, char *argv[])
{

double n;
complex input, omega, sigma;
//

390 IOC Library User’s Guide

// prompt the user for a complex number
//
cout << “Please enter a complex number: ”;
cin >> input;
//
// prompt the user for the value of n
//
cout << “What root would you like of this number? ”;
cin >> n;
//
// calculate the value of omega
//
omega = get_omega(n);
cout << “Here is omega ” << omega << endl;
//
// calculate the value of sigma
//
sigma = get_sigma(input,n);
cout << “Here is sigma ” << sigma << '\n'

<< “Here are the ” << n << “ roots of ” << input << endl;
for (int i = 0; i < n ; i++)

{
cout << sigma*(pow(omega,i)) << endl;

}
return 0

}

This example produces the output shown below in regular type, given the input
shown in bold:

Please enter a complex number: (-7, 24)
What root would you like of this number? 2
Here is omega (-1, 1.22465e-16)
Here is sigma (3, 4)
Here are the 2 roots of (-7, 24)
(3, 4)
(-3, -4)

“Complex Mathematics Library Overview” on page 377
“Review of Complex Numbers” on page 378
“Header Files and Constants for the complex and c_exception Classes” on
page 379

“Example: Use Equality and Inequality Operators”

Example: Use Equality and Inequality Operators
The functions is_equal and is_not_equal in the following example provide a reliable
comparison between two complex values:

// Testing complex values for equality within a certain tolerance

#include <complex.h>
#include <iostream.h> // for output
#include <iomanip.h> // for use of setw() manipulator

int is_equal(const complex &a, const complex &b,
const double tol=0.0001)

{
return (abs(real(a) - real(b)) < tol &&

abs(imag(a) - imag(b)) < tol);
}

Chapter 9. Math 391

int is_not_equal(const complex &a, const complex &b,
const double tol=0.0001)

{
return !is_equal(a, b, tol);

}

int main(int argc, char *argv[])
{

complex c[4] = { complex(1.0, 2.0),
complex(1.0, 2.0),
complex(3.0, 4.0),
complex(1.0000163,1.999903581)};

cout << “Comparison of array elements c[0] to c[3]\n”
<< “== means identical,\n!= means unequal,\n”
<< “ x means equal within tolerance of 0.0001.\n\n”
<< setw(10) << “Element”
<< setw(6) << 0
<< setw(6) << 1
<< setw(6) << 2
<< setw(6) << 3
<< endl;

for (int i=0;i<4;i++) {
cout << setw(10) << i;
for (int j=0;j<4;j++) {

if (c[i]==c[j]) cout << setw(6) << “==”;
else if (is_equal(c[i],c[j])) cout << setw(6) << “x”;

else if (is_not_equal(c[i],c[j])) cout << setw(6) << “!=”;
else cout << setw(6) << “???”;

}
cout << endl;
}

return 0
}

This example produces the following output:
Comparison of array elements c[0] to c[3]
== means identical,
!= means unequal,
x means equal within tolerance of 0.0001.

Element 0 1 2 3
0 == == != x
1 == == != x
2 != != == !=
3 x x != ==

“Complex Mathematics Library Overview” on page 377
“Review of Complex Numbers” on page 378
“Header Files and Constants for the complex and c_exception Classes” on
page 379

“Example: Calculate Roots” on page 390

392 IOC Library User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OR CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2001 393

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on the z/OS operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the
customer to write z/OS C/C++ programs.

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States or other countries or both:

AIX BookManager BookMaster
C/370 CICS/ESA CICS
DB2 Universal Database DB2 DFSMS/MVS
DFSMS GDDM Hiperspace

394 IOC Library User’s Guide

IBM IMS/ESA IMS
iSeries Language Environment Library Reader
MVS/ESA MVS Open Class
OpenEdition OS/2 OS/390
OS/400 Presentation Manager QMF
S/390 VisualAge VM/ESA
VSE/ESA z/OS zSeries
400

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the U.S. and/or other countries.

UNIX is a registered trademark of The Open Group in the U.S. and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the U.S. and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

Standards
Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:
System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

For more information on IEEE, visit their web site at http://www.ieee.org/.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC. For more
information on ISO, visit their web site at http://www.iso.ch/.

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further

Notices 395

reproduction of this material is permitted without the written notice from the X/Open
Company Ltd, UK. For more information, visit http://www.opengroup.org/.

396 IOC Library User’s Guide

Glossary

This glossary defines technical terms and
abbreviations that are used in z/OS C/C++
documentation. If you do not find the term you are
looking for, refer to the index of the appropriate
z/OS C/C++ manual or view IBM Glossary of
Computing Terms, located at:
http://www.ibm.com/ibm/terminology/goc/gocmain.htm

This glossary includes terms and definitions from:

v American National Standard Dictionary for
Information Systems, ANSI/ISO X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI/ISO). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are indicated
by the symbol ANSI/ISO after the definition.

v IBM Dictionary of Computing, SC20-1699.
These definitions are indicated by the registered
trademark IBM after the definition.

v X/Open CAE Specification, Commands and
Utilities, Issue 4. July, 1992. These definitions
are indicated by the symbol X/Open after the
definition.

v ISO/IEC 9945-1:1990/IEEE POSIX
1003.1-1990. These definitions are indicated by
the symbol ISO.1 after the definition.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol
ISO-JTC1 after the definition; definitions taken
from draft international standards, committee
drafts, and working papers being developed by
ISO/IEC JTC1/SC1 are identified by the symbol
ISO Draft after the definition, indicating that final
agreement has not yet been reached among
the participating National Bodies of SC1.

A
abstract class. (1) A class with at least one pure
virtual function that is used as a base class for other
classes. The abstract class represents a concept;
classes derived from it represent implementations of the
concept. You cannot create a direct object of an
abstract class, but you can create references and
pointers to an abstract class and set them to refer to
objects of classes derived from the abstract class. See

also base class. (2) A class that allows polymorphism.
There can be no objects of an abstract class; they are
only used to derive new classes.

abstract code unit. See ACU.

abstract data type. A mathematical model that
includes a structure for storing data and operations that
can be performed on that data. Common abstract data
types include sets, trees, and heaps.

abstraction (data). A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

access. An attribute that determines whether or not a
class member is accessible in an expression or
declaration.

access declaration. A declaration used to restore
access to members of a base class.

access mode. (1) A technique that is used to obtain a
particular logical record from, or to place a particular
logical record into, a file assigned to a mass storage
device. ANSI/ISO. (2) The manner in which files are
referred to by a computer. Access can be sequential
(records are referred to one after another in the order in
which they appear on the file), access can be random
(the individual records can be referred to in a
nonsequential manner), or access can be dynamic
(records can be accessed sequentially or randomly,
depending on the form of the input/output request). IBM.
(3) A particular form of access permitted to a file.
X/Open.

access resolution. The process by which the
accessibility of a particular class member is determined.

access specifier. One of the C++ keywords: public,
private, and protected, used to define the access to a
member.

ACU (abstract code unit). A measurement used by
the z/OS C/C++ compiler for judging the size of a
function. The number of ACUs that comprise a function
is proportional to its size and complexity.

addressing mode. See AMODE.

address space. (1) The range of addresses available
to a computer program. ANSI/ISO. (2) The complete
range of addresses that are available to a programmer.
See also virtual address space. (3) The area of virtual
storage available for a particular job. (4) The memory
locations that can be referenced by a process. X/Open.
ISO.1.

© Copyright IBM Corp. 1996, 2001 397

aggregate. (1) An array or a structure. (2) A
compile-time option to show the layout of a structure or
union in the listing. (3) In programming languages, a
structured collection of data items that form a data type.
ISO-JTC1. (4) In C++, an array or a class with no
user-declared constructors, no private or protected
non-static data members, no base classes, and no
virtual functions.

alert. (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. IBM. (2) To cause the user's
terminal to give some audible or visual indication that an
error or some other event has occurred. When the
standard output is directed to a terminal device, the
method for alerting the terminal user is unspecified.
When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert
character to standard output (unless the utility
description indicates that the use of standard output
produces undefined results in this case). X/Open.

alert character. A character that in the output stream
should cause a terminal to alert its user via a visual or
audible notification. The alert character is the character
designated by a '\a' in the C and C++ languages. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the alert function. X/Open.

This character is named <alert> in the portable
character set.

alias. (1) An alternate label; for example, a label and
one or more aliases may be used to refer to the same
data element or point in a computer program. ANSI/ISO.
(2) An alternate name for a member of a partitioned
data set. IBM. (3) An alternate name used for a
network. Synonymous with nickname. IBM.

alias name. (1) A word consisting solely of
underscores, digits, and alphabetics from the portable
file name character set, and any of the following
characters: ! % , @. Implementations may allow other
characters within alias names as an extension. X/Open.
(2) An alternate name. IBM. (3) A name that is defined
in one network to represent a logical unit name in
another interconnected network. The alias name does
not have to be the same as the real name; if these
names are not the same; translation is required. IBM.

alignment. The storing of data in relation to certain
machine-dependent boundaries. IBM.

alternate code point. A syntactic code point that
permits a substitute code point to be used. For
example, the left brace ({) can be represented by X'B0'
and also by X'C0'.

American National Standard Code for Information
Interchange (ASCII). The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for

information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control characters
and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code
(characters 128–255).

American National Standards Institute (ANSI/ISO).
An organization consisting of producers, consumers,
and general interest groups, that establishes the
procedures by which accredited organizations create
and maintain voluntary industry standards in the United
States. ANSI/ISO.

AMODE (addressing mode). In z/OS, a program
attribute that refers to the address length that a program
is prepared to handle upon entry. In z/OS, addresses
may be 24 or 31 bits in length. IBM.

angle brackets. The characters < (left angle bracket)
and > (right angle bracket). When used in the phrase
“enclosed in angle brackets”, the symbol < immediately
precedes the object to be enclosed, and > immediately
follows it. When describing these characters in the
portable character set, the names <less-than-sign> and
<greater-than-sign> are used. X/Open.

anonymous union. A union that is declared within a
structure or class and does not have a name. It must
not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

API (application program interface). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program. IBM.

application. (1) The use to which an information
processing system is put; for example, a payroll
application, an airline reservation application, a network
application. IBM. (2) A collection of software
components used to perform specific types of
user-oriented work on a computer. IBM.

application generator. An application development
tool that creates applications, application components
(panels, data, databases, logic, interfaces to system
services), or complete application systems from design
specifications.

application program. A program written for or by a
user that applies to the user's work, such as a program
that does inventory control or payroll. IBM.

archive libraries. The archive library file, when
created for application program object files, has a
special symbol table for members that are object files.

398 IOC Library User’s Guide

argument. (1) A parameter passed between a calling
program and a called program. IBM. (2) In a function
call, an expression that represents a value that the
calling function passes to the function specified in the
call. (3) In the shell, a parameter passed to a utility as
the equivalent of a single string in the argv array
created by one of the exec functions. An argument is
one of the options, option-arguments, or operands
following the command name. X/Open.

argument declaration. See parameter declaration.

arithmetic object. (1) A bit field, or an integral,
floating-point, or packed decimal (IBM extension) object.
(2) A real object or objects having the type float, double,
or long double.

array. In programming languages, an aggregate that
consists of data objects with identical attributes, each of
which may be uniquely referenced by subscripting.
ISO-JTC1.

array element. A data item in an array. IBM.

ASCII. See American National Standard Code for
Information Interchange.

Assembler H. An IBM licensed program. Translates
symbolic assembler language into binary machine
language.

assembler language. A source language that includes
symbolic language statements in which there is a
one-to-one correspondence with the instruction formats
and data formats of the computer. IBM.

assembler user exit. In the z/OS Language
Environment a routine to tailor the characteristics of an
enclave prior to its establishment.

assignment expression. An expression that assigns
the value of the right operand expression to the left
operand variable and has as its value the value of the
right operand. IBM.

atexit list. A list of actions specified in the z/OS C/C++
atexit() function that occur at normal program
termination.

auto storage class specifier. A specifier that enables
the programmer to define a variable with automatic
storage; its scope restricted to the current block.

automatic call library. Contains modules that are
used as secondary input to the binder to resolve
external symbols left undefined after all the primary
input has been processed.

The automatic call library can contain:

v Object modules, with or without binder control
statements

v Load modules

v z/OS C/C++ run-time routines (SCEELKED)

automatic library call. The process in which control
sections are processed by the binder or loader to
resolve references to members of partitioned data sets.
IBM.

automatic storage. Storage that is allocated on entry
to a routine or block and is freed on the subsequent
return. Sometimes referred to as stack storage or
dynamic storage.

B
background process. (1) A process that does not
require operator intervention but can be run by the
computer while the workstation is used to do other
work. IBM. (2) A mode of program execution in which
the shell does not wait for program completion before
prompting the user for another command. IBM. (3) A
process that is a member of a background process
group. X/Open. ISO.1.

background process group. Any process group,
other than a foreground process group, that is a
member of a session that has established a connection
with a controlling terminal. X/Open. ISO.1.

backslash. The character \. This character is named
<backslash> in the portable character set.

base class. A class from which other classes are
derived. A base class may itself be derived from another
base class. See also abstract class.

based on. The use of existing classes for
implementing new classes.

binary expression. An expression containing two
operands and one operator.

binary stream. (1) An ordered sequence of
untranslated characters. (2) A sequence of characters
that corresponds on a one-to-one basis with the
characters in the file. No character translation is
performed on binary streams. IBM.

bind. (1) To combine one or more control sections or
program modules into a single program module,
resolving references between them. (2) To assign virtual
storage addresses to external symbols.

binder. The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in the
MVS/ESA, OS/390, or z/OS operating system.

bit field. A member of a structure or union that
contains a specified number of bits. IBM.

bitwise operator. An operator that manipulates the
value of an object at the bit level.

Glossary 399

blank character. (1) A graphic representation of the
space character. ANSI/ISO. (2) A character that
represents an empty position in a graphic character
string. ISO Draft. (3) One of the characters that belong
to the blank character class as defined via the
LC_CTYPE category in the current locale. In the POSIX
locale, a blank character is either a tab or a space
character. X/Open.

block. (1) In programming languages, a compound
statement that coincides with the scope of at least one
of the declarations contained within it. A block may also
specify storage allocation or segment programs for
other purposes. ISO-JTC1. (2) A string of data elements
recorded or transmitted as a unit. The elements may be
characters, words or physical records. ISO Draft. (3)
The unit of data transmitted to and from a device. Each
block contains one record, part of a record, or several
records.

block statement. In the C or C++ languages, a group
of data definitions, declarations, and statements
appearing between a left brace and a right brace that
are processed as a unit. The block statement is
considered to be a single C or C++ statement. IBM.

boundary alignment. The position in main storage of
a fixed-length field, such as a halfword or doubleword,
on a byte-level boundary for that unit of information.
IBM.

braces. The characters { (left brace) and } (right
brace), also known as curly braces. When used in the
phrase “enclosed in (curly) braces” the symbol {
immediately precedes the object to be enclosed, and }
immediately follows it. When describing these
characters in the portable character set, the names
<left-brace> and <right-brace> are used. X/Open.

brackets. The characters [(left bracket) and] (right
bracket), also known as square brackets. When used in
the phrase enclosed in (square) brackets the symbol [
immediately precedes the object to be enclosed, and]
immediately follows it. When describing these
characters in the portable character set, the names
<left-bracket> and <right-bracket> are used. X/Open.

break statement. A C or C++ control statement that
contains the keyword “break” and a semicolon. IBM. It is
used to end an iterative or a switch statement by exiting
from it at any point other than the logical end. Control is
passed to the first statement after the iteration or switch
statement.

built-in. (1) A function that the compiler will
automatically inline instead of making the function call,
unless the programmer specifies not to inline. (2) In
programming languages, pertaining to a language
object that is declared by the definition of the
programming language; for example, the built-in function

SIN in PL/I, the predefined data type INTEGER in
FORTRAN. ISO-JTC1. Synonymous with predefined.
IBM.

byte-oriented stream. See orientation of a stream.

C
C library. A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions. IBM.

C or C++ language statement. A C or C++ language
statement contains zero or more expressions. A block
statement begins with a { (left brace) symbol, ends with
a } (right brace) symbol, and contains any number of
statements.

All C or C++ language statements, except block
statements, end with a ; (semicolon) symbol.

c89 utility. A utility used to compile and bind an
application program from the z/OS shell.

C++ class library. A collection of C++ classes.

C++ library. A system library that contains common
C++ language subroutines for file access, memory
allocation, and other functions.

callable services. A set of services that can be
invoked by z/OS Language Environment-conforming
high level languages using the conventional z/OS
Language Environment-defined call interface, and
usable by all programs sharing the z/OS Language
Environment conventions.

Use of these services helps to decrease an application's
dependence on the specific form and content of the
services delivered by any single operating system.

call chain. A trace of all active functions.

caller. A function that calls another function.

cancelability point. A specific point within the current
thread that is enabled to solicit cancel requests. This is
accomplished using the pthread_testintr() function.

carriage-return character. A character that in the
output stream indicates that printing should start at the
beginning of the same physical line in which the
carriage-return character occurred. The carriage-return
is the character designated by '\r' in the C and C++
languages. It is unspecified whether this character is the
exact sequence transmitted to an output device by the
system to accomplish the movement to the beginning of
the line. X/Open.

case clause. In a C or C++ switch statement, a CASE
label followed by any number of statements.

400 IOC Library User’s Guide

case label. The word case followed by a constant
integral expression and a colon. When the selector
evaluates the value of the constant expression, the
statements following the case label are processed.

cast expression. An expression that converts or
reinterprets its operand.

cast operator. The cast operator is used for explicit
type conversions.

cataloged procedures. A set of control statements
placed in a library and retrievable by name. IBM.

catch block. A block associated with a try block that
receives control when an exception matching its
argument is thrown.

char specifier. A char is a built-in data type. In the
C++ language, char, signed char, and unsigned char
are all distinct data types.

character. (1) A letter, digit, or other symbol that is
used as part of the organization, control, or
representation of data. A character is often in the form
of a spatial arrangement of adjacent or connected
strokes. ANSI/ISO. (2) A sequence of one or more bytes
representing a single graphic symbol or control code.
This term corresponds to the ISO C standard term
multibyte character (multibyte character), where a
single-byte character is a special case of the multibyte
character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with
storage space, and byte is used when storage space is
discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters sharing
an attribute associated with the name of the class. The
classes and the characters that they contain are
dependent on the value of the LC_CTYPE category in
the current locale. X/Open.

character constant. A string of any of the characters
that can be represented, usually enclosed in quotes.

character set. (1) A finite set of different characters
that is complete for a given purpose; for example, the
character set in ISO Standard 646, 7-bit Coded
Character Set for Information Processing Interchange.
ISO Draft. (2) All the valid characters for a programming
language or for a computer system. IBM. (3) A group of
characters used for a specific reason; for example, the
set of characters a printer can print. IBM. (4) See also
portable character set.

character special file. (1) A special file that provides
access to an input or output device. The character
interface is used for devices that do not use block I/O.
IBM. (2) A file that refers to a device. One specific type
of character special file is a terminal device file. X/Open.
ISO.1.

character string. A contiguous sequence of
characters terminated by and including the first null
byte. X/Open.

child. A node that is subordinate to another node in a
tree structure. Only the root node is not a child.

child enclave. The nested enclave created as a result
of certain commands being issued from a parent
enclave.

CICS (Customer Information Control System).
Pertaining to an IBM licensed program that enables
transactions entered at remote terminals to be
processed concurrently by user-written application
programs. It includes facilities for building, using, and
maintaining databases. IBM.

CICS destination control table. See DCT.

CICS translator. A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

class. (1) A C++ aggregate that may contain functions,
types, and user-defined operators in addition to data. A
class may be derived from another class, inheriting the
properties of its parent class. A class may restrict
access to its members. (2) A user-defined data type. A
class data type can contain both data representations
(data members) and functions (member functions).

class key. One of the C++ keywords: class, struct and
union.

class library. A collection of classes.

class member operator. An operator used to access
class members through class objects or pointers to
class objects. The class member operators are:

. -> .* ->*

class name. A unique identifier that names a class
type.

class scope. An indication that a name of a class can
be used only in a member function of that class.

class tag. Synonym for class name.

class template. A blueprint describing how a set of
related classes can be constructed.

class template declaration. A class template
declaration introduces the name of a class template and
specifies its template parameter list. A class template
declaration may optionally include a class template
definition.

class template definition. A class template definition
describes various characteristics of the class types that
are its specializations. These characteristics include the

Glossary 401

|
|
|
|
|

|
|
|

names and types of data members of specializations,
the signatures and definitions of member functions,
accessibility of members, and base classes.

client program. A program that uses a class. The
program is said to be a client of the class.

CLIST. A programming language that typically
executes a list of TSO commands.

CLLE (COBOL Load List Entry). Entry in the load list
containing the name of the program and the load
address.

COBCOM. Control block containing information about
a COBOL partition.

COBOL (common business-oriented language). A
high-level language, based on English, that is primarily
used for business applications.

COBOL Load List Entry. See CLLE.

COBVEC. COBOL vector table containing the address
of the library routines.

coded character set. (1) A set of graphic characters
and their code point assignments. The set may contain
fewer characters than the total number of possible
characters: some code points may be unassigned. IBM.
(2) A coded set whose elements are single characters;
for example, all characters of an alphabet. ISO Draft. (3)
Loosely, a code. ANSI/ISO.

code element set. (1) The result of applying a code to
all elements of a coded set, for example, all the
three-letter international representations of airport
names. ISO Draft. (2) The result of applying rules that
map a numeric code value to each element of a
character set. An element of a character set may be
related to more than one numeric code value but the
reverse is not true. However, for state-dependent
encodings the relationship between numeric code
values to elements of a character set may be further
controlled by state information. The character set may
contain fewer elements than the total number of
possible numeric code values; that is, some code
values may be unassigned. X/Open. (3) Synonym for
codeset.

code page. (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for an 8-bit code, assignment of
characters and meanings to 128 code points for a 7-bit
code. (2) A particular assignment of hexadecimal
identifiers to graphic characters.

code point. (1) A representation of a unique character.
For example, in a single-byte character set each of 256
possible characters is represented by a one-byte code
point. (2) An identifier in an alert description that

represents a short unit of text. The code point is
replaced with the text by an alert display program.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to
determine the logical ordering of character or
wide-character strings. A collating element consists of
either a single character, or two or more characters
collating as a single entity. The value of the
LC_COLLATE category in the current locale determines
the current set of collating elements. X/Open.

collating sequence. (1) A specified arrangement used
in sequencing. ISO-JTC1. ANSI/ISO. (2) An ordering
assigned to a set of items, such that any two sets in
that assigned order can be collated. ANSI/ISO. (3) The
relative ordering of collating elements as determined by
the setting of the LC_COLLATE category in the current
locale. The character order, as defined for the
LC_COLLATE category in the current locale, defines the
relative order of all collating elements, such that each
element occupies a unique position in the order. This is
the order used in ranges of characters and collating
elements in regular expressions and pattern matching.
In addition, the definition of the collating weights of
characters and collating elements uses collating
elements to represent their respective positions within
the collation sequence.

collation. The logical ordering of character or
wide-character strings according to defined precedence
rules. These rules identify a collation sequence between
the collating elements, and such additional rules that
can be used to order strings consisting or multiple
collating elements. X/Open.

collection. (1) An abstract class without any ordering,
element properties, or key properties. (2) In a general
sense, an implementation of an abstract data type for
storing elements.

Collection Class Library. A set of classes that
provide basic functions for collections, and can be used
as base classes.

column position. A unit of horizontal measure related
to characters in a line.

It is assumed that each character in a character set has
an intrinsic column width independent of any output
device. Each printable character in the portable
character set has a column width of one. The standard
utilities, when used as described in this document set,
assume that all characters have integral column widths.
The column width of a character is not necessarily
related to the internal representation of the character
(numbers of bits or bytes).

The column position of a character in a line is defined
as one plus the sum of the column widths of the
preceding characters in the line. Column positions are
numbered starting from 1. X/Open.

402 IOC Library User’s Guide

|
|
|

comma expression. An expression (not a function
argument list) that contains two or more operands
separated by commas. The compiler evaluates all
operands in the order specified, discarding all but the
last (rightmost). The value of the expression is the value
of the rightmost operand. Typically this is done to
produce side effects.

command. A request to perform an operation or run a
program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting
character string is a single command.

command processor parameter list (CPPL). The
format of a TSO parameter list. When a TSO terminal
monitor application attaches a command processor,
register 1 contains a pointer to the CPPL, containing
addresses required by the command processor.

COMMAREA. A communication area made available
to applications running under CICS.

Common Business-Oriented Language. See
COBOL.

common expression elimination. Duplicated
expressions are eliminated by using the result of the
previous expression. This includes intermediate
expressions within expressions.

compilation unit. (1) A portion of a computer program
sufficiently complete to be compiled correctly. IBM. (2) A
single compiled file and all its associated include files.
(3) An independently compilable sequence of high-level
language statements. Each high-level language product
has different rules for what makes up a compilation unit.

complete class name. The complete qualification of a
nested class name including all enclosing class names.

Complex Mathematics library. A C++ class library
that provides the facilities to manipulate complex
numbers and perform standard mathematical operations
on them.

computational independence. No data modified by
either a main task program or a parallel function is
examined or modified by a parallel function that might
be running simultaneously.

concrete class. (1) A class that is not abstract. (2) A
class defining objects that can be created.

condition. (1) A relational expression that can be
evaluated to a value of either true or false. IBM. (2) An
exception that has been enabled, or recognized, by the
z/OS Language Environment and thus is eligible to
activate user and language condition handlers. Any
alteration to the normal programmed flow of an
application. Conditions can be detected by the
hardware/operating system and result in an interrupt.
They can also be detected by language-specific
generated code or language library code.

conditional expression. A compound expression that
contains a condition (the first expression), an expression
to be evaluated if the condition has a nonzero value
(the second expression), and an expression to be
evaluated if the condition has the value zero (the third
expression).

condition handler. A user-written condition handler or
language-specific condition handler (such as a PL/I
ON-unit or z/OS C/C++ signal() function call) invoked
by the z/OS C/C++ condition manager to respond to
conditions.

condition manager. Manages conditions in the
common execution environment by invoking various
user-written and language-specific condition handlers.

condition token. In the z/OS Language Environment,
a data type consisting of 12 bytes (96 bits). The
condition token contains structured fields that indicate
various aspects of a condition including the severity, the
associated message number, and information that is
specific to a given instance of the condition.

const. (1) An attribute of a data object that declares
the object cannot be changed. (2) A keyword that allows
you to define a variable whose value does not change.
(3) A keyword that allows you to define a parameter that
is not changed by the function. (4) A keyword that
allows you to define a member function that does not
modify the state of the class for which it is defined.

constant. (1) In programming languages, a language
object that takes only one specific value. ISO-JTC1. (2)
A data item with a value that does not change. IBM.

constant expression. An expression having a value
that can be determined during compilation and that
does not change during the running of the program.
IBM.

constant propagation. An optimization technique
where constants used in an expression are combined
and new ones are generated. Mode conversions are
done to allow some intrinsic functions to be evaluated at
compile time.

constructed reentrancy. The attribute of applications
that contain external data and require additional
processing to make them reentrant. Contrast with
natural reentrancy.

constructor. A special C++ class member function
that has the same name as the class and is used to
create an object of that class.

control character. (1) A character whose occurrence
in a particular context specifies a control function. ISO
Draft. (2) Synonymous with non-printing character. IBM.
(3) A character, other than a graphic character, that
affects the recording, processing, transmission, or
interpretation of text. X/Open.

Glossary 403

control statement. (1) A statement that is used to
alter the continuous sequential execution of statements;
a control statement may be a conditional statement,
such as if, or an imperative statement, such as return.
(2) A statement that changes the path of execution.

controlling process. The session leader that
establishes the connection to the controlling terminal. If
the terminal ceases to be a controlling terminal for this
session, the session leader ceases to be the controlling
process. X/Open. ISO.1.

controlling terminal. A terminal that is associated with
a session. Each session may have at most one
controlling terminal associated with it, and a controlling
terminal is associated with exactly one session. Certain
input sequences from the controlling terminal cause
signals to be sent to all processes in the process group
associated with the controlling terminal. X/Open. ISO.1.

conversion. (1) In programming languages, the
transformation between values that represent the same
data item but belong to different data types. Information
may be lost because of conversion since accuracy of
data representation varies among different data types.
ISO-JTC1. (2) The process of changing from one
method of data processing to another or from one data
processing system to another. IBM. (3) The process of
changing from one form of representation to another; for
example to change from decimal representation to
binary representation. IBM. (4) A change in the type of a
value. For example, when you add values having
different data types, the compiler converts both values
to a common form before adding the values.

conversion descriptor. A per-process unique value
used to identify an open codeset conversion. X/Open.

conversion function. A member function that
specifies a conversion from its class type to another
type.

coordinated universal time (UTC). Synonym for
Greenwich Mean Time (GMT). See GMT.

copy constructor. A constructor that copies a class
object of the same class type.

CSECT (control section). The part of a program
specified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining main
storage locations.

Cross System Product. See CSP.

CSP (Cross System Product). A set of licensed
programs designed to permit the user to develop and
run applications using independently defined maps
(display and printer formats), data items (records,
working storage, files, and single items), and processes
(logic). The Cross System Product set consists of two

parts: Cross System Product/Application Development
(CSP/AD) and Cross System Product/Application
Execution (CSP/AE). IBM.

current working directory. (1) A directory, associated
with a process, that is used in path name resolution for
path names that do not begin with a slash. X/Open.
ISO.1. (2) In the OS/2 operating system, the first
directory in which the operating system looks for
programs and files and stores temporary files and
output. IBM. (3) In the z/OS UNIX environment, a
directory that is active and that can be displayed.
Relative path name resolution begins in the current
directory. IBM.

cursor. A reference to an element at a specific
position in a data structure.

Customer Information Control System. See CICS.

D
data abstraction. A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

data definition (DD). (1) In the C and C++ languages,
a definition that describes a data object, reserves
storage for a data object, and can provide an initial
value for a data object. A data definition appears
outside a function or at the beginning of a block
statement. IBM. (2) A program statement that describes
the features of, specifies relationships of, or establishes
context of, data. ANSI/ISO. (3) A statement that is
stored in the environment and that externally identifies a
file and the attributes with which it should be opened.

data definition name. See ddname.

data definition statement. See DD statement.

data member. The smallest possible piece of
complete data. Elements are composed of data
members.

data object. (1) A storage area used to hold a value.
(2) Anything that exists in storage and on which
operations can be performed, such as files, programs,
classes, or arrays. (3) In a program, an element of data
structure, such as a file, array, or operand, that is
needed for the execution of a program and that is
named or otherwise specified by the allowable character
set of the language in which a program is coded. IBM.

data set. Under z/OS, a named collection of related
data records that is stored and retrieved by an assigned
name.

404 IOC Library User’s Guide

data stream. A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
IBM.

data structure. The internal data representation of an
implementation.

data type. The properties and internal representation
that characterize data.

Data Window Services (DWS). Services provided as
part of the Callable Services Library that allow
manipulation of data objects such as VSAM linear data
sets and temporary data objects known as
TEMPSPACE.

DBCS (double-byte character set). A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets.

Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires
hardware and programs that support DBCS. IBM.

DCT (destination control table). A table that contains
an entry for each extrapartition, intrapartition, and
indirect destination. Extrapartition entries address data
sets external to the CICS region. Intrapartition
destination entries contain the information required to
locate the queue in the intrapartition data set. Indirect
destination entries contain the information required to
locate the queue in the intrapartition data set.

ddname (data definition name). (1) The logical name
of a file within an application. The ddname provides the
means for the logical file to be connected to the
physical file. (2) The part of the data definition before
the equal sign. It is the name used in a call to fopen or
freopen to refer to the data definition stored in the
environment.

DD statement (data definition statement). (1) In
z/OS, serves as the connection between the logical
name of a file and the physical name of the file. (2) A
job control statement that defines a file to the operating
system, and is a request to the operating system for the
allocation of input/output resources.

dead code elimination. A process that eliminates
code that exists for calculations that are not necessary.
Code may be designated as dead by other optimization
techniques.

dead store elimination. A process that eliminates
unnecessary storage use in code. A store is deemed
unnecessary if the value stored is never referenced
again in the code.

decimal constant. (1) A numerical data type used in
standard arithmetic operations. (2) A number containing
any of the digits 0 through 9. IBM.

decimal overflow. A condition that occurs when one
or more nonzero digits are lost because the destination
field in a decimal operation is too short to contain the
results.

declaration. (1) In the C and C++ languages, a
description that makes an external object or function
available to a function or a block statement. IBM. (2)
Establishes the names and characteristics of data
objects and functions used in a program.

declarator. Designates a data object or function
declared. Initializations can be performed in a
declarator.

default argument. An argument that is declared with a
default value in a function prototype or declaration. If a
call to the function omits this argument, the default
value is used. Arguments with default values must be
the trailing arguments in a function prototype argument
list.

default clause. In the C or C++ languages, within a
switch statement, the keyword default followed by a
colon, and one or more statements. When the
conditions of the specified case labels in the switch
statement do not hold, the default clause is chosen.
IBM.

default constructor. A constructor that takes no
arguments, or, if it takes arguments, all its arguments
have default values.

default initialization. The initial value assigned to a
data object by the compiler if no initial value is specified
by the programmer.

default locale. (1) The C locale, which is always used
when no selection of locale is performed. (2) A system
default locale, named by locale-related environmental
variables.

define directive. A preprocessor directive that directs
the preprocessor to replace an identifier or macro
invocation with special code.

definition. (1) A data description that reserves storage
and may provide an initial value. (2) A declaration that
allocates storage, and may initialize a data object or
specify the body of a function.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free storage
deallocation operator. (2) A C++ operator used to
destroy objects created by new.

demangling. The conversion of mangled names back
to their original source code names. During C++

Glossary 405

compilation, identifiers such as function and static class
member names are mangled (encoded) with type and
scoping information to ensure type-safe linkage. These
mangled names appear in the object file and the final
executable file. Demangling (decoding) converts these
names back to their original names to make program
debugging easier. See also mangling.

deque. A queue that can have elements added and
removed at both ends. A double-ended queue.

dequeue. An operation that removes the first element
of a queue.

dereference. In the C and C++ languages, the
application of the unary operator * to a pointer to access
the object the pointer points to. Also known as
indirection.

derivation. In the C++ language, to derive a class,
called a derived class, from an existing class, called a
base class.

derived class. A class that inherits from a base class.
All members of the base class become members of the
derived class. You can add additional data members
and member functions to the derived class. A derived
class object can be manipulated as if it is a base class
object. The derived class can override virtual functions
of the base class.

descriptor. PL/I control block that holds information
such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another
during run time.

destination control table. See DCT.

destructor. A special member function that has the
same name as its class, preceded by a tilde (˜), and
that "cleans up" after an object of that class, for
example, freeing storage that was allocated when the
object was created. A destructor has no arguments and
no return type.

detach state attribute. An attribute associated with a
thread attribute object. This attribute has two possible
values:

0 Undetached. An undetached thread keeps its
resources after termination of the thread.

1 Detached. A detached thread has its resources
freed by the system after termination.

device. A computer peripheral or an object that
appears to the application as such. X/Open. ISO.1.

difference. For two sets A and B, the difference (A-B)
is the set of all elements in A but not in B. For bags,
there is an additional rule for duplicates: If bag P
contains an element m times and bag Q contains the
same element n times, then, if m>n, the difference

contains that element m-n times. If m≤n, the difference
contains that element zero times.

digraph. A combination of two keystrokes used to
represent unavailable characters in a C or C++ source
program. Digraphs are read as tokens during the
preprocessor phase.

directory. (1) In a hierarchical file system, a container
for files or other directories. IBM. (2) The part of a
partitioned data set that describes the members in the
data set.

disabled signal. Synonym for enabled signal.

display. To direct the output to the user's terminal. If
the output is not directed to the terminal, the results are
undefined. X/Open.

DLL. See dynamic link library.

do statement. In the C and C++ compilers, a looping
statement that contains the keyword “do”, followed by a
statement (the action), the keyword “while”, and an
expression in parentheses (the condition). IBM.

dot. The file name consisting of a single dot character
(.). X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

double-quote. The character ", also known as
quotation mark. X/Open.

This character is named <quotation-mark> in the
portable character set.

doubleword. A contiguous sequence of bytes or
characters that comprises two computer words and is
capable of being addressed as a unit. IBM.

dynamic. Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or fixed
time. IBM.

dynamic allocation. Assignment of system resources
to a program when the program is executed rather than
when it is loaded into main storage. IBM.

dynamic binding. The act of resolving references to
external variables and functions at run time. In C++,
dynamic binding is supported by using virtual functions.

dynamic link library (DLL). A file containing
executable code and data bound to a program at run
time. The code and data in a dynamic link library can be
shared by several applications simultaneously.
Compiling code with the DLL option does not mean that

406 IOC Library User’s Guide

the produced executable will be a DLL. To create a
DLL, use #pragma export or the EXPORTALL compiler
option.

DSA (dynamic storage area). An area of storage
obtained during the running of an application that
consists of a register save area and an area for
automatic data, such as program variables. DSAs are
generally allocated within Language
Environment-managed stack segments. DSAs are
added to the stack when a routine is entered and
removed upon exit in a last in, first out (LIFO) manner.
In Language Environment, a DSA is known as a stack
frame.

dynamic storage. Synonym for automatic storage.

dynamic storage area . See DSA

E
EBCDIC. See extended binary-coded decimal
interchange code.

effective group ID. An attribute of a process that is
used in determining various permissions, including file
access permissions. This value is subject to change
during the process lifetime, as described in the exec
family of functions and setgid(). X/Open. ISO.1.

effective user ID. (1) The user ID associated with the
last authenticated user or the last setuid() program. It
is equal to either the real or the saved user ID. (2) The
current user ID, but not necessarily the user's login ID;
for example, a user logged in under a login ID may
change to another user's ID. The ID to which the user
changes becomes the effective user ID until the user
switches back to the original login ID. All discretionary
access decisions are based on the effective user ID.
IBM. (3) An attribute of a process that is used in
determining various permissions, including file access
permissions. This value is subject to change during the
process lifetime, as described in exec and setuid().
X/Open. ISO.1.

elaborated type specifier. A specifier typically used in
an incomplete class declaration to qualify types that are
otherwise hidden.

element. The component of an array, subrange,
enumeration, or set.

element equality. A relation that determines if two
elements are equal.

element occurrence. A single instance of an element
in a collection. In a unique collection, element
occurrence is synonymous with element value.

element value. All the instances of an element with a
particular value in a collection. In a nonunique
collection, an element value may have more than one

occurrence. In a unique collection, element value is
synonymous with element occurrence.

else clause. The part of an if statement that contains
the word else, followed by a statement. The else clause
provides an action that is started when the if condition
evaluates to a value of zero (false). IBM.

empty line. A line consisting of only a new-line
character. X/Open.

empty string. (1) A string whose first byte is a null
byte. Synonymous with null string. X/Open. (2) A
character array whose first element is a null character.
ISO.1.

enabled signal. The occurrence of an enabled signal
results in the default system response or the execution
of an established signal handler. If disabled, the
occurrence of the signal is ignored.

encapsulation. Hiding the internal representation of
data objects and implementation details of functions
from the client program. This enables the end user to
focus on the use of data objects and functions without
having to know about their representation or
implementation.

enclave. In z/OS Language Environment, an
independent collection of routines, one of which is
designated as the main routine. An enclave is roughly
analogous to a program or run unit.

enqueue. (1) An operation that adds an element as
the last element to a queue. (2) Request control of a
serially reusable resource.

entry point. The address or label of the first
instruction that is executed when a routine is entered for
execution.

enumeration constant. In the C or C++ language, an
identifier, with an associated integer value, defined in an
enumerator. An enumeration constant may be used
anywhere an integer constant is allowed. IBM.

enumeration data type. (1) In the Fortran, C, and
C++ language, a data type that represents a set of
values that a user defines. IBM. (2) A type that
represents integers and a set of enumeration constants.
Each enumeration constant has an associated integer
value.

enumeration tag. In the C and C++ language, the
identifier that names an enumeration data type. IBM.

enumeration type. An enumeration type defines a set
of enumeration constants. In the C++ language, an
enumeration type is a distinct data type that is not an
integral type.

enumerator. In the C and C++ language, an
enumeration constant and its associated value. IBM.

Glossary 407

equivalence class. (1) A grouping of characters that
are considered equal for the purpose of collation; for
example, many languages place an uppercase
character in the same equivalence class as its
lowercase form, but some languages distinguish
between accented and unaccented character forms for
the purpose of collation. IBM. (2) A set of collating
elements with the same primary collation weight.

Elements in an equivalence class are typically elements
that naturally group together, such as all accented
letters based on the same base letter.

The collation order of elements within an equivalence
class is determined by the weights assigned on any
subsequent levels after the primary weight. X/Open.

escape sequence. (1) A representation of a character.
An escape sequence contains the \ symbol followed by
one of the characters: a, b, f, n, r, t, v, ', ", x, \, or
followed by one or more octal or hexadecimal digits. (2)
A sequence of characters that represent, for example,
non-printing characters, or the exact code point value to
be used to represent variant and nonvariant characters
regardless of code page. (3) In the C and C++
language, an escape character followed by one or more
characters. The escape character indicates that a
different code, or a different coded character set, is
used to interpret the characters that follow. Any member
of the character set used at run time can be
represented using an escape sequence. (4) A character
that is preceded by a backslash character and is
interpreted to have a special meaning to the operating
system. (5) A sequence sent to a terminal to perform
actions such as moving the cursor, changing from
normal to reverse video, and clearing the screen.
Synonymous with multibyte control. IBM.

exception. (1) Any user, logic, or system error
detected by a function that does not itself deal with the
error but passes the error on to a handling routine (also
called throwing the exception). (2) In programming
languages, an abnormal situation that may arise during
execution, that may cause a deviation from the normal
execution sequence, and for which facilities exist in a
programming language to define, raise, recognize,
ignore, and handle it; for example, (ON-) condition in
PL/I, exception in ADA. ISO-JTC1.

executable. A load module or program object which
has yet to be loaded into memory for execution.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided. The
internal format of an executable file is unspecified, but a
conforming application cannot assume an executable
file is a text file. X/Open.

exception handler. (1) Exception handlers are catch
blocks in C++ applications. Catch blocks catch
exceptions when they are thrown from a function
enclosed in a try block. Try blocks, catch blocks, and
throw expressions are the constructs used to implement
formal exception handling in C++ applications. (2) A set
of routines used to detect deadlock conditions or to
process abnormal condition processing. An exception
handler allows the normal running of processes to be
interrupted and resumed. IBM.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided. The
internal format of an executable file is unspecified, but a
conforming application cannot assume an executable
file is a text file. X/Open.

executable program. A program that has been
link-edited and therefore can be run in a processor.
IBM.

extended binary-coded data interchange code
(EBCDIC). A coded character set of 256 8-bit
characters. IBM.

extended-precision. Pertaining to the use of more
than two computer words to represent a floating point
number in accordance with the required precision. In
z/OS four computer words are used for an
extended-precision number.

extension. (1) An element or function not included in
the standard language. (2) File name extension.

external data definition. A description of a variable
appearing outside a function. It causes the system to
allocate storage for that variable and makes that
variable accessible to all functions that follow the
definition and are located in the same file as the
definition. IBM.

extern storage class specifier. A specifier that
enables the programmer to declare objects and
functions that several source files can use.

F
feature test macro (FTM). A macro (#define) used to
determine whether a particular set of features will be
included from a header. X/Open. ISO.1.

FIFO special file. A type of file with the property that
data written to such a file is read on a first-in-first-out
basis. Other characteristics of FIFOs are described in
open(), read(), write(), and lseek(). X/Open. ISO.1.

file access permissions. The standard file access
control mechanism uses the file permission bits. The

408 IOC Library User’s Guide

bits are set at the time of file creation by functions such
as open(), creat(), mkdir(), and mkfifo() and can be
changed by chmod(). The bits are read by stat() or
fstat(). X/Open.

file descriptor. (1) A positive integer that the system
uses instead of the file name to identify an open file. (2)
A per-process unique, non-negative integer used to
identify an open file for the purpose of file access.
ISO.1.

The value of a file descriptor is from zero to
{OPEN_MAX}—which is defined in <limits.h>. A process
can have no more than {OPEN_MAX} file descriptors
open simultaneously. File descriptors may also be used
to implement directory streams. X/Open.

file mode. An object containing the file mode bits and
file type of a file, as described in <sys/stat.h>. X/Open.

file mode bits. A file's file permission bits,
set-user-ID-on-execution bit (S_ISUID) and
set-group-ID-on-execution bit (S_ISGID). X/Open.

file permission bits. Information about a file that is
used, along with other information, to determine if a
process has read, write, or execute/search permission
to a file. The bits are divided into three parts: owner,
group, and other. Each part is used with the
corresponding file class of process. These bits are
contained in the file mode, as described in <sys/stat.h>.
The detailed usage of the file permission bits is
described in file access permissions. X/Open. ISO.1.

file scope. A name declared outside all blocks,
classes, and function declarations has file scope and
can be used after the point of declaration in a source
file.

filter. A command whose operation consists of reading
data from standard input or a list of input files and
writing data to standard output. Typically, its function is
to perform some transformation on the data stream.
X/Open.

first element. The element visited first in an iteration
over a collection. Each collection has its own definition
for first element. For example, the first element of a
sorted set is the element with the smallest value.

flat collection. A collection that has no hierarchical
structure.

float constant. (1) A constant representing a
nonintegral number. (2) A number containing a decimal
point, an exponent, or both a decimal point and an
exponent. The exponent contains an e or E, an optional
sign (+ or -), and one or more digits (0 through 9). IBM.

for statement. A looping statement that contains the
word for followed by a for-initializing-statement, an
optional condition, a semicolon, and an optional
expression, all enclosed in parentheses.

foreground process. (1) A process that must run to
completion before another command is issued. The
foreground process is in the foreground process group,
which is the group that receives the signals generated
by a terminal. IBM. (2) A process that is a member of a
foreground process group. X/Open. ISO.1.

foreground process group. (1) The group that
receives the signals generated by a terminal. IBM. (2) A
process group whose member processes have certain
privileges, denied to processes in background process
groups, when accessing their controlling terminal. Each
session that has established a connection with a
controlling terminal has exactly one process group of
the session as the foreground process group of that
controlling terminal. X/Open. ISO.1.

foreground process group ID. The process group ID
of the foreground process group. X/Open. ISO.1.

form-feed character. A character in the output stream
that indicates that printing should start on the next page
of an output device. The formfeed is the character
designated by '\f' in the C and C++ language. If the
formfeed is not the first character of an output line, the
result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an output
device by the system to accomplish the movement to
the next page. X/Open.

forward declaration. A declaration of a class or
function made earlier in a compilation unit, so that the
declared class or function can be used before it has
been defined.

freestanding application. (1) An application that is
created to run without the run-time environment or
library with which it was developed. (2) An z/OS C/C++
application that does not use the services of the
dynamic z/OS C/C++ run-time library or of the
Language Environment. Under z/OS C support, this
ability is a feature of the System Programming C
support.

free store. Dynamically allocated memory. New and
delete are used to allocate and deallocate free store.

friend class. A class in which all the member
functions are granted access to the private and
protected members of another class. It is named in the
declaration of another class and uses the keyword
friend as a prefix to the class. For example, the
following source code makes all the functions and data
in class you friends of class me:

class me {
friend class you;

// ...
};

friend function. A function that is granted access to
the private and protected parts of a class. It is named in
the declaration of the other class with the prefix friend.

Glossary 409

function. A named group of statements that can be
called and evaluated and can return a value to the
calling statement. IBM.

function call. An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of values. IBM.

function declarator. The part of a function definition
that names the function, provides additional information
about the return value of the function, and lists the
function parameters. IBM.

function definition. The complete description of a
function. A function definition contains a sequence of
specifiers (storage class, optional type, inline, virtual,
optional friend), a function declarator, optional
constructor-initializers, parameter declarations, optional
const, and the block statement. Inline, virtual, friend,
and const are not available with C.

function prototype. A function declaration that
provides type information for each parameter. It is the
first line of the function (header) followed by a
semicolon (;). The declaration is required by the
compiler at the time that the function is declared, so that
the compiler can check the type.

function scope. Labels that are declared in a function
have function scope and can be used anywhere in that
function after their declaration.

function template. Provides a blueprint describing
how a set of related individual functions can be
constructed.

G
Generalization. Refers to a class, function, or static
data member which derives its definition from a
template. An instantiation of a template function would
be a generalization.

Generalized Object File Format (GOFF). It is the
strategic object module format for S/390. It extends the
capabilities of object modules to contain more
information than current object modules. It removes the
limitations of the previous object module format and
supports future enhancements. It is required for
XPLINK.

generic class. Synonym for class templates.

global. Pertaining to information available to more
than one program or subroutine. IBM.

global scope. Synonym for file scope.

global variable. A symbol defined in one program
module that is used in other independently compiled
program modules.

GMT (Greenwich Mean Time). The solar time at the
meridian of Greenwich, formerly used as the prime
basis of standard time throughout the world. GMT has
been superseded by coordinated universal time (UTC).

graphic character. (1) A visual representation of a
character, other than a control character, that is
normally produced by writing, printing, or displaying.
ISO Draft. (2) A character that can be displayed or
printed. IBM.

Graphical Data Display Manager (GDDM). Pertaining
to an IBM licensed program that provides a group of
routines that allows pictures to be defined and displayed
procedurally through function routines that correspond
to graphic primitives. IBM.

Greenwich Mean Time. See GMT.

group ID. (1) A non-negative integer that is used to
identify a group of system users. Each system user is a
member of at least one group. When the identity of a
group is associated with a process, a group ID value is
referred to as a real group ID, an effective group ID,
one of the supplementary group IDs or a saved
set-group-ID. X/Open. (2) A non-negative integer, which
can be contained in an object of type gid_t, that is used
to identify a group of system users. ISO.1.

H
halfword. A contiguous sequence of bytes or
characters that constitutes half a computer word and
can be addressed as a unit. IBM.

hash function. A function that determines which
category, or bucket, to put an element in. A hash
function is needed when implementing a hash table.

hash table. (1) A data structure that divides all
elements into (preferably) equal-sized categories, or
buckets, to allow quick access to the elements. The
hash function determines which bucket an element
belongs in. (2) A table of information that is accessed by
way of a shortened search key (that hash value). Using
a hash table minimizes average search time.

header file. A text file that contains declarations used
by a group of functions, programs, or users.

heap storage. An area of storage used for allocation
of storage whose lifetime is not related to the execution
of the current routine. The heap consists of the initial
heap segment and zero or more increments.

hexadecimal constant. A constant, usually starting
with special characters, that contains only hexadecimal

410 IOC Library User’s Guide

digits. Three examples for the hexadecimal constant
with value 0 would be '\x00', '0x0', or '0X00'.

High Level Assembler. An IBM licensed program.
Translates symbolic assembler language into binary
machine language.

hiperspace memory file. An IBM file used under z/OS
to deal with memory files as large as 2 gigabytes. IBM.

hooks. Instructions inserted into a program by a
compiler at compile-time. Using hooks, you can set
break-points to instruct the Debug Tool to gain control of
the program at selected points during its execution.

hybrid code. Program statements that have not been
internationalized with respect to code page, especially
where data constants contain variant characters. Such
statements can be found in applications written in older
implementations of MVS, which required syntax
statements to be written using code page IBM-1047
exclusively. Such applications cannot be converted from
one code page to another using iconv().

I
I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to identify
or name a data element and possibly to indicate certain
properties of that data element. ANSI/ISO. (2) In
programming languages, a token that names a data
object such as a variable, an array, a record, a
subprogram, or a function. ANSI/ISO. (3) A sequence of
letters, digits, and underscores used to identify a data
object or function. IBM.

if statement. A conditional statement that contains the
keyword if, followed by an expression in parentheses
(the condition), a statement (the action), and an optional
else clause (the alternative action). IBM.

ILC (interlanguage call). A function call made by one
language to a function coded in another language.
Interlanguage calls are used to communicate between
programs written in different languages.

ILC (interlanguage communication). The ability of
routines written in different programming languages to
communicate. ILC support enables the application writer
to readily build applications from component routines
written in a variety of languages.

implementation-defined behavior. Application
behavior that is not defined by the standards. The
implementing compiler and library defines this behavior
when a program contains correct program constructs or
uses correct data. Programs that rely on
implementation-defined behavior may behave differently
on different C or C++ implementations. Refer to the
z/OS C/C++ books that are listed in “z/OS C/C++ and
Related Publications” on page x for information about

implementation-defined behavior in the z/OS C/C++
environment. Contrast with unspecified behavior and
undefined behavior.

IMS (Information Management System). Pertaining
to an IBM database/data communication (DB/DC)
system that can manage complex databases and
networks. IBM.

include directive. A preprocessor directive that
causes the preprocessor to replace the statement with
the contents of a specified file.

include file. See header file.

incomplete class declaration. A class declaration
that does not define any members of a class. Until a
class is fully declared, or defined, you can only use the
class name where the size of the class is not required.
Typically an incomplete class declaration is used as a
forward declaration.

incomplete type. A type that has no value or meaning
when it is first declared. There are three incomplete
types: void, arrays of unknown size and structures and
unions of unspecified content. A void type can never be
completed. Arrays of unknown size and structures or
unions of unspecified content can be completed in
further declarations.

indirection. (1) A mechanism for connecting objects
by storing, in one object, a reference to another object.
(2) In the C and C++ languages, the application of the
unary operator * to a pointer to access the object to
which the pointer points.

indirection class. Synonym for reference class.

induction variable. It is a controlling variable of a
loop.

inheritance. A technique that allows the use of an
existing class as the base for creating other classes.

initial heap. The z/OS C/C++ heap controlled by the
HEAP run-time option and designated by a heap_id of
0. The initial heap contains dynamically allocated user
data.

initializer. An expression used to initialize data
objects. The C++ language, supports the following types
of initializers:

v An expression followed by an assignment operator
that is used to initialize fundamental data type objects
or class objects that contain copy constructors.

v A parenthesized expression list that is used to
initialize base classes and members that use
constructors.

Both the C and C++ languages support an expression
enclosed in braces ({ }), that used to initialize
aggregates.

Glossary 411

inlined function. A function whose actual code
replaces a function call. A function that is both declared
and defined in a class definition is an example of an
inline function. Another example is one which you
explicitly declared inline by using the keyword inline.
Both member and non-member functions can be inlined.

input stream. A sequence of control statements and
data submitted to a system from an input unit.
Synonymous with input job stream, job input stream.
IBM.

instance. An object-oriented programming term
synonymous with object. An instance is a particular
instantiation of a data type. It is simply a region of
storage that contains a value or group of values. For
example, if a class box is previously defined, two
instances of a class box could be instantiated with the
declaration: box box1, box2;

instantiate. To create or generate a particular instance
or object of a data type. For example, an instance box1
of class box could be instantiated with the declaration:
box box1;

instruction. A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer's request to the processor
to perform a specific operation.

instruction scheduling. An optimization technique
that reorders instructions in code to minimize execution
time.

integer constant. A decimal, octal, or hexadecimal
constant.

integral object. A character object, an object having
an enumeration type, an object having variations of the
type int, or an object that is a bit field.

Interactive System Productivity Facility. See ISPF.

interlanguage call. See ILC (interlanguage call).

interlanguage communication. See ILC
(interlanguage communication).

internationalization. The capability of a computer
program to adapt to the requirements of different native
languages, local customs, and coded character sets.
X/Open.

Synonymous with I18N.

interoperability. The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units.

Interprocedural Analysis. See IPA.

interprocess communication. (1) The exchange of
information between processes or threads through
semaphores, queues, and shared memory. (2) The
process by which programs communicate data to each
other to synchronize their activities. Semaphores,
signals, and internal message queues are common
methods of inter-process communication.

I/O Stream library. A class library that provides the
facilities to deal with many varieties of input and output.

IPA (Interprocedural Analysis). A process for
performing optimizations across compilation units.

ISPF (Interactive System Productivity Facility). An
IBM licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user. (ISPF)

iteration. The process of repeatedly applying a
function to a series of elements in a collection until
some condition is satisfied.

J
JCL (job control language). A control language used
to identify a job to an operating system and to describe
the job's requirement. IBM.

K
keyword. (1) A predefined word reserved for the C
and C++ languages, that may not be used as an
identifier. (2) A symbol that identifies a parameter in
JCL.

kind attribute. An attribute for a mutex attribute
object. This attribute's value determines whether the
mutex can be locked once or more than once for a
thread and whether state changes to the mutex will be
reported to the debug interface.

L
label. An identifier within or attached to a set of data
elements. ISO Draft.

Language Environment. Abbreviated form of z/OS
Language Environment. Pertaining to an IBM software
product that provides a common run-time environment
and run-time services to applications compiled by
Language Environment-conforming compilers.

last element. The element visited last in an iteration
over a collection. Each collection has its own definition
for last element. For example, the last element of a
sorted set is the element with the largest value.

412 IOC Library User’s Guide

late binding. Allowing the system to determine the
specific class of the object and invoke the appropriate
function implementations at run time. Late binding or
dynamic binding hides the differences between a group
of related classes from the application program.

leaves. Nodes without children. Synonymous with
terminals.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, calls, subroutines,
or other data. IBM. (2) A set of object modules that can
be specified in a link command.

linkage editor. Synonym for linker. The linkage editor
has been replaced by the binder for the MVS/ESA,
OS/390, or z/OS operating systems. See binder.

Linkage. Refers to the binding between a reference
and a definition. A function has internal linkage if the
function is defined inline as part of the class, is declared
with the inline keyword, or is a non-member function
declared with the static keyword. All other functions
have external linkage.

linker. A computer program for creating load modules
from one or more object modules by resolving cross
references among the modules and, if necessary,
adjusting addresses. IBM.

link pack area (LPA). In z/OS, an area of storage
containing re-enterable routines from system libraries.
Their presence in main storage saves loading time.

literal. (1) In programming languages, a lexical unit
that directly represents a value; for example, 14
represents the integer fourteen, “APRIL” represents the
string of characters APRIL, 3.0005E2 represents the
number 300.05. ISO-JTC1. (2) A symbol or a quantity in
a source program that is itself data, rather than a
reference to data. IBM. (3) A character string whose
value is given by the characters themselves; for
example, the numeric literal 7 has the value 7, and the
character literal CHARACTERS has the value
CHARACTERS. IBM.

loader. A routine, commonly a computer program, that
reads data into main storage. ANSI/ISO.

load module. All or part of a computer program in a
form suitable for loading into main storage for execution.
A load module is usually the output of a linkage editor.
ISO Draft.

local. (1) In programming languages, pertaining to the
relationship between a language object and a block
such that the language object has a scope contained in
that block. ISO-JTC1. (2) Pertaining to that which is
defined and used only in one subdivision of a computer
program. ANSI/ISO.

local customs. The conventions of a geographical
area or territory for such things as date, time, and
currency formats. X/Open.

locale. The definition of the subset of a user's
environment that depends on language and cultural
conventions. X/Open.

localization. The process of establishing information
within a computer system specific to the operation of
particular native languages, local customs, and coded
character sets. X/Open.

local scope. A name declared in a block has scope
within the block, and can therefore only be used in that
block.

Long name. An external name C++ name in an object
module, or and external name in an object module
created by the C compiler when the LONGNAME option is
used. Long names are up to 1024 characters long and
may contain both upper-case and lower-case
characters.

lvalue. An expression that represents a data object
that can be both examined and altered.

M
macro. An identifier followed by arguments (may be a
parenthesized list of arguments) that the preprocessor
replaces with the replacement code located in a
preprocessor #define directive.

macro call. Synonym for macro.

macro instruction. Synonym for macro.

main function. An external function with the identifier
main that is the first user function—aside from exit
routines and C++ static object constructors—to get
control when program execution begins. Each C and
C++ program must have exactly one function named
main.

makefile. A text file containing a list of your
application's parts. The make utility uses makefiles to
maintain application parts and dependencies.

make utility. Maintains all of the parts and
dependencies for your application. The make utility uses
a makefile to keep the parts of your program
synchronized. If one part of your application changes,
the make utility updates all other files that depend on
the changed part. This utility is available under the z/OS
shell and by default, uses the c89 utility to recompile
and bind your application.

mangling. The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. These mangled
names ensure type-safe linkage. See also demangling.

Glossary 413

manipulator. A value that can be inserted into streams
or extracted from streams to affect or query the
behavior of the stream.

member. A data object or function in a structure,
union, or class. Members can also be classes,
enumerations, bit fields, and type names.

member function. (1) An operator or function that is
declared as a member of a class. A member function
has access to the private and protected data members
and member functions of objects of its class. Member
functions are also called methods. (2) A function that
performs operations on a class.

method. In the C++ language, a synonym for member
function.

method file. (1) A file that allows users to indicate to
the localedef utility where to look for user-provided
methods for processing user-designed codepages. (2)
For ASCII locales, a file that defines the method
functions to be used by C runtime locale-sensitive
interfaces. A method file also identifies where the
method functions can be found. IBM supplies several
method files used to create its standard set of ASCII
locales. Other method files can be created to support
customized or user-created codepages. Such
customized method files replace IBM-supplied charmap
method functions with user-written functions.

migrate. To move to a changed operating
environment, usually to a new release or version of a
system. IBM.

module. A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character
set.

multicharacter collating element. A sequence of two
or more characters that collate as an entity. For
example, in some coded character sets, an accented
character is represented by a non-spacing accent,
followed by the letter. Other examples are the Spanish
elements ch and ll. X/Open.

multiple inheritance. An object-oriented programming
technique implemented in the C++ language through
derivation, in which the derived class inherits members
from more than one base class.

multitasking. A mode of operation that allows
concurrent performance, or interleaved execution of two
or more tasks. ISO-JTC1. ANSI/ISO.

mutex. A flag used by a semaphore to protect shared
resources. The mutex is locked and unlocked by

threads in a program. A mutex can only be locked by
one thread at a time and can only be unlocked by the
same thread that locked it. The current owner of a
mutex is the thread that it is currently locked by. An
unlocked mutex has no current owner.

mutex attribute object. Allows the user to manage
the characteristics of mutexes in their application by
defining a set of values to be used for the mutex during
its creation. A mutex attribute object allows the user to
create many mutexes with the same set of
characteristics without redefining the same set of
characteristics for each mutex created.

mutex object. Used to identify a mutex.

N
namespace. A category used to group similar types of
identifiers.

named pipe. A FIFO file. Named pipes allow transfer
of data between processes in a FIFO manner and
synchronization of process execution. Allows processes
to communicate even though they do not know what
processes are on the other end of the pipe.

natural reentrancy. A program that contains no
writable static and requires no additional processing to
make it reentrant is considered naturally reentrant.

nested class. A class defined within the scope of
another class.

nested enclave. A new enclave created by an existing
enclave. The nested enclave that is created must be a
new main routine within the process. See also child
enclave and parent enclave.

newline character. A character that in the output
stream indicates that printing should start at the
beginning of the next line. The newline character is
designated by '\n' in the C and C++ language. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the movement to the next line. X/Open.

nickname. Synonym for alias.

non-printing character. See control character.

null character (NUL). The ASCII or EBCDIC character
'\0' with the hex value 00, all bits turned off. It is used to
represent the absence of a printed or displayed
character. This character is named <NUL> in the
portable character set.

null pointer. The value that is obtained by converting
the number 0 into a pointer; for example, (void *) 0.
The C and C++ languages guarantee that this value will
not match that of any legitimate pointer, so it is used by
many functions that return pointers to indicate an error.
X/Open.

414 IOC Library User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|

null statement. A C or C++ statement that consists
solely of a semicolon.

null string. (1) A string whose first byte is a null byte.
Synonymous with empty string. X/Open. (2) A character
array whose first element is a null character. ISO.1.

null value. A parameter position for which no value is
specified. IBM.

null wide-character code. A wide-character code with
all bits set to zero. X/Open.

number sign. The character #, also known as pound
sign and hash sign. This character is named
<number-sign> in the portable character set.

O
object. (1) A region of storage. An object is created
when a variable is defined. An object is destroyed when
it goes out of scope. (See also instance.) (2) In
object-oriented design or programming, an abstraction
consisting of data and the operations associated with
that data. See also class. IBM. (3) An instance of a
class.

object code. Machine-executable instructions, usually
generated by a compiler from source code written in a
higher level language (such as the C++ language). For
programs that must be linked, object code consists of
relocatable machine code.

object module. (1) All or part of an object program
sufficiently complete for linking. Assemblers and
compilers usually produce object modules. ISO Draft.
(2) A set of instructions in machine language produced
by a compiler from a source program. IBM.

object-oriented programming. A programming
approach based on the concepts of data abstraction
and inheritance. Unlike procedural programming
techniques, object-oriented programming concentrates
not on how something is accomplished, but on what
data objects comprise the problem and how they are
manipulated.

octal constant. The digit 0 (zero) followed by any
digits 0 through 7.

open file. A file that is currently associated with a file
descriptor. X/Open. ISO.1.

operand. An entity on which an operation is
performed. ISO-JTC1. ANSI/ISO.

operating system (OS). Software that controls
functions such as resource allocation, scheduling,
input/output control, and data management.

operator function. An overloaded operator that is
either a member of a class or that takes at least one
argument that is a class type or a reference to a class
type.

operator precedence. In programming languages, an
order relation defining the sequence of the application
of operators within an expression. ISO-JTC1.

orientation of a stream. After application of an input
or output function to a stream, it becomes either
byte-oriented or wide-oriented. A byte-oriented stream is
a stream that had a byte input or output function applied
to it when it had no orientation. A wide-oriented stream
is a stream that had a wide character input or output
function applied to it when it had no orientation. A
stream has no orientation when it has been associated
with an external file but has not had any operations
performed on it.

overflow. (1) A condition that occurs when a portion of
the result of an operation exceeds the capacity of the
intended unit of storage. (2) That portion of an operation
that exceeds the capacity of the intended unit of
storage. IBM.

overlay. The technique of repeatedly using the same
areas of internal storage during different stages of a
program. ANSI/ISO. Unions are used to accomplish this
in C and C++.

overloading. An object-oriented programming
technique that allows you to redefine functions and most
standard C++ operators when the functions and
operators are used with class types.

P
parameter. (1) In the C and C++ languages, an object
declared as part of a function declaration or definition
that acquires a value on entry to the function, or an
identifier following the macro name in a function-like
macro definition. X/Open. (2) Data passed between
programs or procedures. IBM.

parameter declaration. A description of a value that a
function receives. A parameter declaration determines
the storage class and the data type of the value.

parent enclave. The enclave that issues a call to
system services or language constructs to create a
nested or child enclave. See also child enclave and
nested enclave.

parent process. (1) The program that originates the
creation of other processes by means of spawn or exec
function calls. See also child process. (2) A process that
creates other processes.

parent process ID. (1) An attribute of a new process
identifying the parent of the process. The parent
process ID of a process is the process ID of its creator,

Glossary 415

for the lifetime of the creator. After the creator's lifetime
has ended, the parent process ID is the process ID of
an implementation-dependent system process. X/Open.
(2) An attribute of a new process after it is created by a
currently active process. ISO.1.

partitioned concatenation. Specifying multiple PDSs
or PDSEs under one ddname. The concatenated data
sets act as one big PDS or PDSE and access can be
made to any member with a unique name. An attempted
access to a member whose name occurs more than
once in the concatenated data sets, returns the first
member with that name found in the entire
concatenation.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data. IBM.

partitioned data set extended (PDSE). Similar to
partitioned data set, but with extended capabilities.

path name. (1) A string that is used to identify a file. A
path name consists of, at most, {PATH_MAX} bytes,
including the terminating null character. It has an
optional beginning slash, followed by zero or more file
names separated by slashes. If the path name refers to
a directory, it may also have one or more trailing
slashes. Multiple successive slashes are treated as one
slash. A path name that begins with two successive
slashes may be interpreted in an implementation-
dependent manner, although more than two leading
slashes are treated as a single slash. The interpretation
of the path name is described in path name resolution.
ISO.1. (2) A file name specifying all directories leading
to the file.

path name resolution. Path name resolution is
performed for a process to resolve a path name to a
particular file in a file hierarchy. There may be multiple
path names that resolve to the same file. X/Open.

pattern. A sequence of characters used either with
regular expression notation or for path name expansion,
as a means of selecting various characters strings or
path names, respectively. The syntaxes of the two
patterns are similar, but not identical. X/Open.

period. The character (.). The term period is
contrasted against dot, which is used to describe a
specific directory entry. This character is named
<period> in the portable character set.

permissions. Codes that determine how a file can be
used by any users who work on the system. See also
file access permissions. IBM.

persistent environment. A program can explicitly
establish a persistent environment, direct functions to it,
and explicitly terminate it.

pointer. In the C and C++ languages, a variable that
holds the address of a data object or a function. IBM.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the
address of non-static members of a class.

polymorphism. The technique of taking an abstract
view of an object or function and using any concrete
objects or arguments that are derived from this abstract
view.

portable character set. The set of characters
specified in POSIX 1003.2, section 2.4:

<NUL>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<space>
<exclamation-mark> !
<quotation-mark> "
<number-sign> #
<dollar-sign> $
<percent-sign> %
<ampersand> &
<apostrophe> '
<left-parenthesis> (
<right-parenthesis>)
<asterisk> *
<plus-sign> +
<comma> ,
<hyphen> –
<hyphen-minus> –
<period> .
<slash> ⁄
<zero> 0
<one> 1
<two> 2
<three> 3
<four> 4
<five> 5
<six> 6
<seven> 7
<eight> 8
<nine> 9
<colon> :
<semicolon> ;
<less-than-sign> <
<equals-sign> =
<greater-than-sign> >
<question-mark> ?
<commercial-at> @

<A> A
 B
<C> C
<D> D
<E> E
<F> F
<G> G
<H> H
<I> I

416 IOC Library User’s Guide

<J> J
<K> K
<L> L
<M> M
<N> N
<O> O
<P> P
<Q> Q
<R> R
<S> S
<T> T
<U> U
<V> V
<W> W
<X> X
<Y> Y
<Z> Z

<left-square-bracket> [
<backslash> \
<reverse-solidus> \
<right-square-bracket>]
<circumflex> |
<circumflex-accent> |
<underscore> _
<low-line> _
<grave-accent> v
<a> a
 b
<c> c
<d> d
<e> e
<f> f
<g> g
<h> h
<i> i
<j> j
<k> k
<l> l

<m> m
<n> n
<o> o
<p> p
<q> q
<r> r
<s> s
<t> t
<u> u
<v> v
<w> w
<x> x
<y> y
<z> z

<left-brace> {
<left-curly-bracket> {
<vertical-line> |
<right-brace> }
<right-curly-bracket> }
<tilde> ˜

portable file name character set. The set of
characters from which portable file names are
constructed. For a file name to be portable across
implementations conforming to the ISO POSIX-1
standard and to ISO/IEC 9945, it must consists only of
the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore,
and hyphen characters, respectively. The hyphen must
not be used as the first character of a portable file
name. Upper- and lower-case letters retain their unique
identities between conforming implementations. In the
case of a portable path name, the slash character may
also be used. X/Open. ISO.1.

portability. The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

positional parameter. A parameter that must appear
in a specified location relative to other positional
parameters. IBM.

precedence. The priority system for grouping different
types of operators with their operands.

predefined macros. Frequently used routines
provided by an application or language for the
programmer.

preinitialization. A process by which an environment
or library is initialized once and can then be used
repeatedly to avoid the inefficiency of initializing the
environment or library each time it is needed.

prelinker. A utility provided with z/OS Language
Environment that you can use to process application
programs that require DLL support, or contain either
constructed reentrancy or external symbol names that
are longer than 8 characters. You require the prelinker,
or its equivalent function which is provided by the
binder, to process all C++ applications, or C applications
that are compiled with the RENT, DLL, LONGNAME or
IPA options. As of Version 2 Release 4, the prelinker
was superseded by the binder. See also binder.

preprocessor. A phase of the compiler that examines
the source program for preprocessor statements that
are then executed, resulting in the alteration of the
source program.

preprocessor statement. In the C and C++
languages, a statement that begins with the symbol #
and is interpreted by the preprocessor during
compilation. IBM.

primary expression. (1) An identifier, parenthesized
expression, function call, array element specification,
structure member specification, or union member
specification. IBM. (2) Literals, names, and names
qualified by the :: (scope resolution) operator.

printable character. One of the characters included in
the print character classification of the LC_CTYPE
category in the current locale. X/Open.

Glossary 417

private. Pertaining to a class member that is only
accessible to member functions and friends of that
class.

process. (1) An instance of an executing application
and the resources it uses. (2) An address space and
single thread of control that executes within that
address space, and its required system resources. A
process is created by another process issuing the
fork() function. The process that issues the fork()
function is known as the parent process, and the new
process created by the fork() function is known as the
child process. X/Open. ISO.1.

process group. A collection of processes that permits
the signaling of related processes. Each process in the
system is a member of a process group that is identified
by the process group ID. A newly created process joins
the process group of its creator. IBM. X/Open. ISO.1.

process group ID. The unique identifier representing
a process group during its lifetime. A process group ID
is a positive integer. (Under ISO only, it is a positive
integer that can be contained in a pid_t.) A process
group ID will not be reused by the system until the
process group lifetime ends. X/Open. ISO.1.

process group lifetime. A period of time that begins
when a process group is created and ends when the
last remaining process in the group leaves the group,
because either it is the end of the last process' lifetime
or the last remaining process is calling the setsid() or
setpgid() functions. X/Open. ISO.1.

process ID. The unique identifier representing a
process. A process ID is a positive integer. (Under ISO
only, it is a positive integer that can be contained in a
pid_t.) A process ID will not be reused by the system
until the process lifetime ends. In addition, if there exists
a process group whose process group ID is equal to
that process ID, the process ID will not be reused by
the system until the process group lifetime ends. A
process that is not a system process will not have a
process ID of 1. X/Open. ISO.1.

process lifetime. The period of time that begins when
a process is created and ends when the process ID is
returned to the system. After a process is created with a
fork() function, it is considered active. Its thread of
control and address space exist until it terminates. It
then enters an inactive state where certain resources
may be returned to the system, although some
resources, such as the process ID, are still in use.
When another process executes a wait() or waitpid()
function for an inactive process, the remaining
resources are returned to the system. The last resource
to be returned to the system is the process ID. At this
time, the lifetime of the process ends. X/Open. ISO.1.

program object. All or part of a computer program in
a from suitable for loading into main storage for
execution. A program object is the output of the z/OS

Binder and is a newer more flexible format (e.g. longer
external names) than a load module.

protected. Pertaining to a class member that is only
accessible to member functions and friends of that
class, or to member functions and friends of classes
derived from that class.

prototype. A function declaration or definition that
includes both the return type of the function and the
types of its parameters. See function prototype.

public. Pertaining to a class member that is accessible
to all functions.

pure virtual function. A virtual function that has a
function definition of = 0;. See also abstract classes.

Q
qualified class name. Any class name or class name
qualified with one or more :: (scope resolution)
operators.

qualified name. Used to qualify a non-class type
name such as a member by its class name.

qualified type name. Used to reduce complex class
name syntax by using typedefs to represent qualified
class names.

Query Management Facility (QMF). Pertaining to an
IBM query and report writing facility that enables a
variety of tasks such as data entry, query building,
administration, and report analysis. IBM.

queue. A sequence with restricted access in which
elements can only be added at the back end (or bottom)
and removed from the front end (or top). A queue is
characterized by first-in, first-out behavior and
chronological order.

quotation marks. The characters " and ‘, also known
as double-quote and single-quote respectively. X/Open.

R
radix character. The character that separates the
integer part of a number from the fractional part.
X/Open.

real group ID. The attribute of a process that, at the
time of process creating, identifies the group of the user
who created the process. This value is subject to
change during the process lifetime, as describe in
setgid(). X/Open. ISO.1.

real user ID. The attribute of a process that, at the
time of process creation, identifies the user who created
the process. This value is subject to change during the
process lifetime, as described in setuid(). X/Open.
ISO.1.

418 IOC Library User’s Guide

reason code. A code that identifies the reason for a
detected error. IBM.

reassociation. An optimization technique that
rearranges the sequence of calculations in a subscript
expression producing more candidates for common
expression elimination.

redirection. In the shell, a method of associating files
with the input or output of commands. X/Open.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

reference class. A class that links a concrete class to
an abstract class. Reference classes make
polymorphism possible with the Collection Classes.
Synonymous with indirection class.

refresh. To ensure that the information on the user's
terminal screen is up-to-date. X/Open.

register storage class specifier. A specifier that
indicates to the compiler within a block scope data
definition, or a parameter declaration, that the object
being described will be heavily used.

register variable. A variable defined with the register
storage class specifier. Register variables have
automatic storage.

regular expression. (1) A mechanism to select
specific strings from a set of character strings. (2) A set
of characters, meta-characters, and operators that
define a string or group of strings in a search pattern.
(3) A string containing wildcard characters and
operations that define a set of one or more possible
strings.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure imposed by
the system. X/Open. ISO.1.

relation. An unordered flat collection class that uses
keys, allows for duplicate elements, and has element
equality.

relative path name. The name of a directory or file
expressed as a sequence of directories followed by a
file name, beginning from the current directory. See path
name resolution. IBM.

reserved word. (1) In programming languages, a
keyword that may not be used as an identifier.
ISO-JTC1. (2) A word used in a source program to
describe an action to be taken by the program or
compiler. It must not appear in the program as a
user-defined name or a system name. IBM.

RMODE (residency mode). In z/OS, a program
attribute that refers to where a module is prepared to
run. RMODE can be 24 or ANY. ANY refers to the fact

that the module can be loaded either above or below
the 16M line. RMODE 24 means the module expects to
be loaded below the 16M line.

RTTI. Use the RTTI option to generate run-time type
identification (RTTI) information for the typeid operator
and the dynamic_cast operator.

run-time library. A compiled collection of functions
whose members can be referred to by an application
program during run-time execution. Typically used to
refer to a dynamic library that is provided in object code,
such that references to the library are resolved during
the linking step. The run-time library itself is not
statically bound into the application modules.

S
saved set-group-ID. An attribute of a process that
allows some flexibility in the assignment of the effective
group ID attribute, as described in the exec() family of
functions and setgid(). X/Open. ISO.1.

saved set-user-ID. An attribute of a process that
allows some flexibility in the assignment of the effective
user ID attribute, as described in exec() and setuid().
X/Open. ISO.1.

scalar. An arithmetic object, or a pointer to an object
of any type.

scope. (1) That part of a source program in which a
variable is visible. (2) That part of a source program in
which an object is defined and recognized.

scope operator (::). An operator that defines the
scope for the argument on the right. If the left argument
is blank, the scope is global; if the left argument is a
class name, the scope is within that class. Synonymous
with scope resolution operator.

scope resolution operator (::). Synonym for scope
operator.

semaphore. An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources. Processes can be
locked to a resource with semaphores if the processes
follow certain programming conventions.

sequence. A sequentially ordered flat collection.

sequential concatenation. Multiple sequential data
sets or partitioned data-set members are treated as one
long sequential data set. In the case of sequential data
sets, you can access or update the data sets in order.
In the case of partitioned data-set members, you can
access or update the members in order. Repositioning
is possible if all of the data sets in the concatenation
support repositioning.

Glossary 419

|
|
|

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. IBM.

session. A collection of process groups established for
job control purposes. Each process group is a member
of a session. A process is a member of the session of
which its process group is a member. A newly created
process joins the session of its creator. A process can
alter its session membership; see setsid(). There can
be multiple process groups in the same session.
X/Open. ISO.1.

shell. A program that interprets sequences of text
input as commands. It may operate on an input stream
or it may interactively prompt and read commands from
a terminal. X/Open.

This feature is provided as part of the z/OS Shell and
Utilities feature licensed program.

Short name. An external non-C++ name in an object
module produced by compiling with the NOLONGNAME
option. Such a name is up to 8 characters long and
single case.

signal. (1) A condition that may or may not be
reported during program execution. For example, SIGFPE
is the signal used to represent erroneous arithmetic
operations such as a division by zero. (2) A mechanism
by which a process may be notified of, or affected by,
an event occurring in the system. Examples of such
events include hardware exceptions and specific actions
by processes. The term signal is also used to refer to
the event itself. X/Open. ISO.1. (3) A method of
interprocess communication that simulates software
interrupts. IBM.

signal handler. A function to be called when the signal
is reported.

single-byte character set (SBCS). A set of characters
in which each character is represented by a one-byte
code. IBM.

single-precision. Pertaining to the use of one
computer word to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

single-quote. The character ‘, also known as
apostrophe. This character is named <quotation-mark>
in the portable character set.

slash. The character /, also known as solidus. This
character is named <slash> in the portable character
set.

socket. (1) A unique host identifier created by the
concatenation of a port identifier with a transmission
control protocol/Internet protocol (TCP/IP) address. (2) A
port identifier. (3) A 16-bit port-identifier. (4) A port on a
specific host; a communications end point that is

accessible though a protocol family's addressing
mechanism. A socket is identified by a socket address.
IBM.

sorted map. A sorted flat collection with key and
element equality.

sorted relation. A sorted flat collection that uses keys,
has element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element
equality.

source module. A file that contains source statements
for such items as high-level language programs and
data description specifications. IBM.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run. IBM.

space character. The character defined in the
portable character set as <space>. The space character
is a member of the space character class of the current
locale, but represents the single character, and not all of
the possible members of the class. X/Open.

spanned record. A logical record contained in more
than one block. IBM.

specialization. A user-supplied definition which
replaces a corresponding template instantiation.

specifiers. Used in declarations to indicate storage
class, fundamental data type and other properties of the
object or function being declared.

spill area. A storage area used to save the contents of
registers. IBM.

SQL (Structured Query Language). A language
designed to create, access, update and free data
tables.

square brackets. The characters [(left bracket) and]
(right bracket). Also see brackets.

stack frame. The physical representation of the
activation of a routine. The stack frame is allocated and
freed on a LIFO (last in, first out) basis. A stack is a
collection of one or more stack segments consisting of
an initial stack segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to
be used for diagnostic messages. X/Open.

standard input. (1) An input stream usually intended
to be used for primary data input. X/Open. (2) The
primary source of data entered into a command.
Standard input comes from the keyboard unless

420 IOC Library User’s Guide

redirection or piping is used, in which case standard
input can be from a file or the output from another
command. IBM.

standard output. (1) An output stream usually
intended to be used for primary data output. X/Open. (2)
The primary destination of data coming from a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command. IBM.

statement. An instruction that ends with the character
; (semicolon) or several instructions that are surrounded
by the characters { and }.

static. A keyword used for defining the scope and
linkage of variables and functions. For internal variables,
the variable has block scope and retains its value
between function calls. For external values, the variable
has file scope and retains its value within the source
file. For class variables, the variable is shared by all
objects of the class and retains its value within the
entire program.

static binding. The act of resolving references to
external variables and functions before run time.

storage class specifier. One of the terms used to
specify a storage class, such as auto, register, static, or
extern.

stream. (1) A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
(2) A file access object that allows access to an ordered
sequence of characters, as described by the ISO C
standard. Such objects can be created by the fdopen()
or fopen() functions, and are associated with a file
descriptor. A stream provides the additional services of
user-selectable buffering and formatted input and
output. X/Open.

string. A contiguous sequence of bytes terminated by
and including the first null byte. X/Open.

string constant. Zero or more characters enclosed in
double quotation marks.

string literal. Zero or more characters enclosed in
double quotation marks.

striped data set. A special data set organization that
spreads a data set over a specified number of volumes
so that I/O parallelism can be exploited. Record n in a
striped data set is found on a volume separate from the
volume containing record n - p, where n > p.

struct. An aggregate of elements having arbitrary
types.

structure. A construct (a class data type) that contains
an ordered group of data objects. Unlike an array, the
data objects within a structure can have varied data

types. A structure can be used in all places a class is
used. The initial projection is public.

structure tag. The identifier that names a structure
data type.

Structured Query Language. See SQL.

stub routine. A routine, within a run-time library, that
contains the minimum lines of code required to locate a
given routine at run time.

subprogram. In the IPA Link version of the Inline
Report listing section, an equivalent term for 'function'.

subscript. One or more expressions, each enclosed in
brackets, that follow an array name. A subscript refers
to an element in an array.

subsystem. A secondary or subordinate system,
usually capable of operating independently of or
asynchronously with, a controlling system. ISO Draft.

subtree. A tree structure created by arbitrarily denoting
a node to be the root node in a tree. A subtree is
always part of a whole tree.

superset. Given two sets A and B, A is a superset of B
if and only if all elements of B are also elements of A.
That is, A is a superset of B if B is a subset of A.

support. In system development, to provide the
necessary resources for the correct operation of a
functional unit. IBM.

switch expression. The controlling expression of a
switch statement.

switch statement. A C or C++ language statement
that causes control to be transferred to one of several
statements depending on the value of an expression.

system default. A default value defined in the system
profile. IBM.

system process. (1) An implementation-dependent
object, other than a process executing an application,
that has a process ID. X/Open. (2) An object, other than
a process executing an application, that is defined by
the system, and has a process ID. ISO.1.

T
tab character. A character that in the output stream
indicates that printing or displaying should start at the
next horizontal tabulation position on the current line.
The tab is the character designated by '\t' in the C
language. If the current position is at or past the last
defined horizontal tabulation position, the behavior is
unspecified. It is unspecified whether the character is
the exact sequence transmitted to an output device by
the system to accomplish the tabulation. X/Open.

Glossary 421

This character is named <tab> in the portable character
set.

task library. A class library that provides the facilities
to write programs that are made up of tasks.

template. A family of classes or functions with variable
types.

template class. A class instance generated by a class
template.

template function. A function generated by a function
template.

template instantiation. The act of creating a new
definition of a function, class, or member of a class from
a template declaration and one or more template
arguments.

terminals. Synonym for leaves.

text file. A file that contains characters organized into
one or more lines. The lines must not contain NUL
characters and none can exceed {LINE_MAX}—which is
defined in limits.h—bytes in length, including the
new-line character. The term text file does not prevent
the inclusion of control or other unprintable characters
(other than NUL). X/Open.

thread. The smallest unit of operation to be performed
within a process. IBM.

throw expression. An argument to the C++ exception
being thrown.

tilde. The character ˜. This character is named <tilde>
in the portable character set.

token. The smallest independent unit of meaning of a
program as defined either by a parser or a lexical
analyzer. A token can contain data, a language
keyword, an identifier, or other parts of language syntax.
IBM.

traceback. A section of a dump that provides
information about the stack frame, the program unit
address, the entry point of the routine, the statement
number, and the status of the routines on the call-chain
at the time the traceback was produced.

trigraph sequence. An alternative spelling of some
characters to allow the implementation of C in character
sets that do not provide a sufficient number of
non-alphabetic graphics. ANSI/ISO.

Before preprocessing, each trigraph sequence in a
string or literal is replaced by the single character that it
represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C++ exception is
passed to a handler.

type definition. A definition of a name for a data type.
IBM.

type specifier. Used to indicate the data type of an
object or function being declared.

U
ultimate consumer. The target of data in an I/O
operation. An ultimate consumer can be a file, a device,
or an array of bytes in memory.

ultimate producer. The source of data in an I/O
operation. An ultimate producer can be a file, a device,
or an array of byes in memory.

unary expression. An expression that contains one
operand. IBM.

undefined behavior. Action by the compiler and
library when the program uses erroneous constructs or
contains erroneous data. Permissible undefined
behavior includes ignoring the situation completely with
unpredictable results. It also includes behaving in a
documented manner that is characteristic of the
environment, during translation or program execution,
with or without issuing a diagnostic message. It can also
include terminating a translation or execution, while
issuing a diagnostic message. Contrast with unspecified
behavior and implementation-defined behavior.

underflow. (1) A condition that occurs when the result
of an operation is less than the smallest possible
nonzero number. (2) Synonym for arithmetic underflow,
monadic operation. IBM.

union. (1) In the C or C++ language, a variable that
can hold any one of several data types, but only one
data type at a time. IBM. (2) For bags, there is an
additional rule for duplicates: If bag P contains an
element m times and bag Q contains the same element
n times, then the union of P and Q contains that
element m+n times.

union tag. The identifier that names a union data type.

unnamed pipe. A pipe that is accessible only by the
process that created the pipe and its child processes.
An unnamed pipe does not have to be opened before it
can be used. It is a temporary file that lasts only until
the last file descriptor that uses it is closed.

unique collection. A collection in which the value of
an element only occurs once; that is, there are no
duplicate elements.

unrecoverable error. An error for which recovery is
impossible without use of recovery techniques external
to the computer program or run.

unspecified behavior. Action by the compiler and
library when the program uses correct constructs or
data, for which the standards impose no specific

422 IOC Library User’s Guide

|
|
|
|

requirements. Such action should not cause compiler or
application failure. You should not, however, write any
programs to rely on such behavior as they may not be
portable to other systems. Contrast with
implementation-defined behavior and undefined
behavior.

user-defined data type. (1) A mathematical model
that includes a structure for storing data and operations
that can be performed on that data. Common abstract
data types include sets, trees, and heaps. (2) See also
abstract data type.

user ID. A nonnegative integer that is used to identify
a system user. (Under ISO only, a nonnegative integer,
which can be contained in an object of type uid_t.)
When the identity of a user is associated with a
process, a user ID value is referred to as a real user ID,
an effective user ID, or (under ISO only, and there
optionally) a saved set-user ID. X/Open. ISO.1.

user name. A string that is used to identify a user.
ISO.1.

user prefix. In the z/OS environment, the user prefix
is typically the user's logon user identification.

V
value numbering. An optimization technique that
involves local constant propagation, local expression
elimination, and folding several instructions into a single
instruction.

variable. In programming languages, a language
object that may take different values, one at a time. The
values of a variable are usually restricted to a certain
data type. ISO-JTC1.

variant character. A character whose hexadecimal
value differs between different character sets. On
EBCDIC systems, such as S/390, these 13 characters
are an exception to the portability of the portable
character set.

<left-square-bracket> [
<right-square-bracket>]
<left-brace> {
<right-brace> }
<backslash> \
<circumflex> |
<tilde> ˜
<exclamation-mark> !
<number-sign> #
<vertical-line> |
<grave-accent> v
<dollar-sign> $
<commercial-at> @

vertical-tab character. A character that in the output
stream indicates that printing should start at the next
vertical tabulation position. The vertical-tab is the
character designated by '\v' in the C or C++ languages.
If the current position is at or past the last defined

vertical tabulation position, the behavior is unspecified.
It is unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the tabulation. X/Open. This character is
named <vertical-tab> in the portable character set.

virtual address space. In virtual storage systems, the
virtual storage assigned to a batched or terminal job, a
system task, or a task initiated by a command.

virtual function. A function of a class that is declared
with the keyword virtual. The implementation that is
executed when you make a call to a virtual function
depends on the type of the object for which it is called,
which is determined at run time.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

visible. Visibility of identifiers is based on scoping
rules and is independent of access.

volatile attribute. (1) In the C or C++ language, the
keyword volatile, used in a definition, declaration, or
cast. It causes the compiler to place the value of the
data object in storage and to reload this value at each
reference to the data object. IBM. (2) An attribute of a
data object that indicates the object is changeable. Any
expression referring to a volatile object is evaluated
immediately (for example, assignments).

W
while statement. A looping statement that contains
the keyword while followed by an expression in
parentheses (the condition) and a statement (the
action). IBM.

white space. (1) Space characters, tab characters,
form-feed characters, and new-line characters. (2) A
sequence of one or more characters that belong to the
space character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale,
white space consists of one or more blank characters
(space and tab characters), new-line characters,
carriage-return characters, form-feed characters, and
vertical-tab characters. X/Open.

wide-character. A character whose range of values
can represent distinct codes for all members of the
largest extended character set specified among the
supporting locales.

wide-character code. An integral value corresponding
to a single graphic symbol or control code. X/Open.

Glossary 423

wide-character string. A contiguous sequence of
wide-character codes terminated by and including the
first null wide-character code. X/Open.

wide-oriented stream. See orientation of a stream.

word. A character string considered as a unit for a
given purpose. In z/OS, a word is 32 bits or 4 bytes.

working directory. Synonym for current working
directory.

writable static area. See WSA.

write. (1) To output characters to a file, such as
standard output or standard error. Unless otherwise
stated, standard output is the default output destination
for all uses of the term write. X/Open. (2) To make a
permanent or transient recording of data in a storage
device or on a data medium. ISO-JTC1. ANSI/ISO.

WSA (writable static area). An area of memory in the
program that is modifyable during program execution.
Typically, this area contains global variables and
function and variable descriptors for DLLs.

X
XPLINK (Extra Performance Linkage). A new call
linkage between functions that has the potential for a
significant performance increase when used in an
environment of frequent calls between small functions.
XPLINK makes subroutine calls more efficient by
removing nonessential instructions from the main path.
When all functions are compiled with the XPLINK
option, pointers can be used without restriction, which
makes it easier to port new applications to z/OS.

Z
z/OS UNIX System Services (z/OS UNIX). An
element of the z/OS operating system, (formerly known
as OpenEdition). z/OS UNIX includes a POSIX system
Application Programming Interface for the C language, a
shell and utilities component, and a dbx debugger. All
the components conform to IEEE POSIX standards
(ISO 9945-1: 1990/IEEE POSIX 1003.1-1990, IEEE
POSIX 1003.1a, IEEE POSIX 1003.2, and IEEE POSIX
1003.4a).

424 IOC Library User’s Guide

Bibliography

Bibliography
This bibliography lists the publications for IBM
products that are related to the z/OS C/C++
product. It includes publications covering the
application programming task. The bibliography is
not a comprehensive list of the publications for
these products, however, it should be adequate for
most z/OS C/C++ users. Refer to z/OS
Information Roadmap, SA22-7500, for a complete
list of publications belonging to the z/OS product.

Related publications not listed in this section can
be found on the IBM Online Library Omnibus
Edition MVS Collection, SK2T-0710, the z/OS
Collection, SK3T-4269, or on a tape available with
z/OS.

z/OS
v z/OS Introduction and Release Guide,

GA22-7502

v z/OS Planning for Installation, GA22-7504

v z/OS Summary of Message Changes,
SA22-7505

v z/OS Information Roadmap, SA22-7500

z/OS C/C++
v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ User’s Guide, SC09-4767

v C/C++ Language Reference, SC09-4815

v z/OS C/C++ Messages, GC09-4819

v z/OS C/C++ Run-Time Library Reference,
SA22-7821

v z/OS C Curses, SA22-7820

v z/OS C/C++ Compiler and Run-Time Migration
Guide, GC09-4913

v IBM Open Class Library User’s Guide,
SC09-4811

v IBM Open Class Library Reference, SC09-4812

v Debug Tool User’s Guide and Reference,
SC09-2137

v Standard C++ Library Reference, which is
available at:
http://www.ibm.com/software/ad/c390/czos/czosdocs.html

z/OS Language Environment
v z/OS Language Environment Concepts Guide,

SA22-7567

v z/OS Language Environment Customization,
SA22-7564

v z/OS Language Environment Debugging Guide,
GA22-7560

v z/OS Language Environment Programming
Guide, SA22-7561

v z/OS Language Environment Programming
Reference, SA22-7562

v z/OS Language Environment Run-Time
Migration Guide, GA22-7565

v z/OS Language Environment Writing
Interlanguage Applications, SA22-7563

v z/OS Language Environment Run-Time
Messages, SA22-7566

Assembler
v HLASM Language Reference, SC26-4940

v HLASM Programmer’s Guide, SC26-4941

COBOL
v COBOL for OS/390 & VM Compiler and

Run-Time Migration Guide, GC26-4764

v COBOL for OS/390 & VM Programming Guide,
SC26-9049

v COBOL for OS/390 & VM Language Reference,
SC26-9046

v COBOL for OS/390 & VM Diagnosis Guide,
GC26-9047

v COBOL for OS/390 & VM Licensed Program
Specifications, GC26-9044

v COBOL for OS/390 & VM Customization under
OS/390, GC26-9045

v COBOL Millenium Language Extensions Guide,
GC26-9266

PL/I
v VisualAge PL/I Language Reference,

SC26-9476

v PL/I for MVS & VM Language Reference,
SC26-3114

v PL/I for MVS & VM Programming Guide,
SC26-3113

v PL/I for MVS & VM Compiler and Run-Time
Migration Guide, SC26-3118

© Copyright IBM Corp. 1996, 2001 425

VS FORTRAN
v Language and Library Reference, SC26-4221

v Programming Guide, SC26-4222

CICS
v CICS Application Programming Guide,

SC34-5702

v CICS Application Programming Reference,
SC34-5703

v CICS Distributed Transaction Programming
Guide, SC34-5708

v CICS Front End Programming Interface User’s
Guide, SC34-5710

v CICS Messages and Codes, GC33-5716

v CICS Resource Definition Guide, SC34-5722

v CICS System Definition Guide, SC34-5725

v CICS System Programming Reference,
SC34-5726

v CICS User’s Handbook, SX33-6116

v CICS Family: Client/Server Programming,
SC34-1435

v CICS Transaction Server for OS/390 Migration
Guide, GC34-5699

v CICS Transaction Server for OS/390 Release
Guide, GC34-5701

v CICS Transaction Server for OS/390: Planning
for Installation, GC34-5700

DB2
v DB2 Administration Guide, SC26-9931

v DB2 Application Programming and SQL Guide,
SC26-9933

v DB2 ODBC Guide and Reference, GC26-9941

v DB2 Command Reference, SC26-9934

v DB2 Data Sharing: Planning and Administration,
SC26-9935

v DB2 Installation Guide, GC26-9936

v DB2 Messages and Codes, GC26-9940

v DB2 Reference for Remote DRDA Requesters
and Servers, SC26-9942

v DB2 SQL Reference, SC26-9944

v DB2 Utility Guide and Reference, SC26-9945

IMS/ESA
v IMS/ESA Application Programming: Design

Guide, SC26-8728

v IMS/ESA Application Programming: Transaction
Manager, SC26-8729

v IMS/ESA Application Programming: Database
Manager, SC26-8727

v IMS/ESA Application Programming: EXEC DLI
Commands for CICS and IMS, SC26-8726

QMF
v Introducing QMF, GC26-9576

v Using QMF, SC26-9578

v Developing QMF Applications, SC26-9579

v Reference, SC26-9577

v Installing and Managing QMF on MVS,
SC26-9575

v Messages and Codes, SC26-9580

DFSMS
v z/OS DFSMS Introduction, SC26-7397

v z/OS DFSMS: Managing Catalogs, SC26-7409

v z/OS DFSMS: Using Data Sets, SC26-7410

v z/OS DFSMS Macro Instructions for Data Sets,
SC26-7408

v z/OS DFSMS Access Method Services,
SC26-7394

v z/OS DFSMS Program Management,
SC27-1130

426 IOC Library User’s Guide

����

Program Number:

Printed in the USA

SC09-4811-01

	Contents
	About This Book
	Who Should Use This Book
	A Note about Examples
	z/OS C/C++ and Related Publications
	Hardcopy Books
	Softcopy Books
	Softcopy Examples
	z/OS C/C++ on the World Wide Web
	Where to find more information
	Accessing licensed books on the Web
	Using LookAt to look up message explanations

	About IBM z/OS C/C++
	Changes for z/OS V1R2
	Limitations of Enhanced ASCII
	z/OS Language Environment Downward Compatibility

	The C/C++ Compilers
	The C Language
	The C++ Language
	Common Features of the z/OS C and C++ Compilers
	z/OS C Compiler Specific Features
	z/OS C++ Compiler Specific Features

	Class Libraries
	IBM Open Class Library Source

	Utilities
	The Debug Tool
	IBM C/C++ Productivity Tools for OS/390
	z/OS Language Environment
	About Prelinking, Linking, and Binding
	Notes on the Prelinking Process
	File Format Considerations
	The Program Management Binder

	z/OS UNIX System Services (z/OS UNIX)
	z/OS C/C++ Applications with z/OS UNIX C/C++ Functions
	Input and Output
	I/O Interfaces
	File Types
	Additional I/O Features

	The System Programming C Facility
	Interaction with Other IBM Products
	Additional Features of z/OS C/C++

	Chapter 1. IBM Open Class Overview
	Changes in Version 5 of the IBM Open Class Library for z/OS
	Changes in Version 5 of the IBM Open Class Library
	Changes in Version 4 of IBM Open Class Library
	Changes in Version 4 of the IBM Collection Classes
	Backward-Compatible Items
	Incompatibilities

	Deprecated Functions in Version 4 of the IBM Open Class Library

	IBM Open Class Applications
	Design an IBM Open Class Application

	Create Cross-Platform Applications
	Specify a Different Target Release on z/OS
	Compile Open Class Applications
	Build a 64-Bit Enabled Application

	Build the IBM Open Class Library Source Code for Debugging Purposes
	Work with the IBM Open Class Samples
	Obsolete or Ignored Member Functions
	IBM Open Class Libraries, Headers, and Conventions

	Chapter 2. Application Control
	Open Class Threading Model
	Thread Safety and the IBM Open Class Library
	Behavior of IBM Open Class Threads
	Resources and Conditions
	Thread-Specific Data
	Thread Scheduling
	Multi-Processing Interface
	Start a Thread

	Reference Counting
	Use Reference Counted Objects
	Use Counted Pointers

	Event Notification
	Notification Classes
	Notification Structure
	Notify Observers Synchronously
	Notify Observers Asynchronously
	Pass Data Along with Event Notification

	Application Resources

	Chapter 3. Object Persistent
	IBM Open Class Streaming Classes
	Object Streaming
	Data Streams
	Instantiate a Data Stream
	Instantiate a Stream Module
	Stream Data
	Stream Base Classes

	Application Data Interfaces
	Add Streaming Support to Structs and Simple Classes
	Create a Streamable Class
	Create a Streamable Template Class

	Release-to-Release Data Compatibility (RRDC)
	Enable Release-to-Release Data Compatibility

	Exceptions Defined by the Streaming Classes

	Chapter 4. USL I/O Streaming
	The USL I/O Stream Class Hierarchy
	USL I/O Stream Header Files
	The USL I/O Stream Classes and stdio.h
	Use Predefined Streams
	Use Anonymous Streams
	Stream Buffers
	Format State Flags
	Format Stream Output
	Define Your Own Format State Flags

	Manipulators
	Create Manipulators
	Define an APP Parameterized Manipulator
	Define a MANIP Parameterized Manipulator
	Define Nonassociative Parameterized Manipulators

	Thread Safety and USL I/O Streaming
	Basic USL I/O Stream Tasks
	Receive Input from Standard Input
	Display Output on Standard Output or Standard Error
	Flush Output Streams with endl and flush
	Parse Multiple Inputs
	Open a File for Input and Read from the File
	Open a File for Output and Write to the File
	Combine Input and Output of Different Types

	Advanced USL I/O Stream Tasks
	Associate a File with a Standard Input or Output Stream
	Move through a file with filebuf Functions
	Define an Input Operator for a Class Type
	Define an Output Operator for a Class Type
	Correct Input Stream Errors
	Manipulate Strings with the strstream Classes

	Chapter 5. File Systems
	File System Entities
	Instantiate the File System Classes
	Create and Delete Files and Directories
	Get and Set Information about File System Entities

	Path Names and Path Name Parsers
	Work with Path Names

	Data Accessors
	Access File Contents

	File System Iterators
	Access Directory and Volume Contents

	File System Movers and Copiers
	Copy and Move Files and Directories

	Thread Safety
	Customize File System Operations
	File System Exceptions

	Chapter 6. Internationalization and Text
	International Framework
	Locales in Internationalization
	Locale Classes
	Locale Names
	Set the Locale
	Get a Key for a Locale
	Get an Object from the Current Default Locale
	Get an Object from a Specific Locale
	Iterate through Available Locales

	Collation Classes
	Instantiate a Collation Object
	Perform Case-Insensitive String Comparison
	Perform Language-Sensitive String Comparison
	Perform Bitwise String Comparison
	Use the ICollation::transform Function
	Iterate through Available Collation Objects

	Transcoding Classes
	Transcoder Names
	Instantiate a Transcoder
	Convert Text from Character Format to Unicode
	Convert Text from Unicode to Character Format
	Process Line-Breaking Characters
	Convert with Standard C++ Compatible Transcoding Functions
	Iterate through Available Transcoders
	Verify Transcoding Results

	Date and Time Classes
	Dates and Calendars
	Time
	Time Stamps

	National
	National Language Support
	Double-Byte Character Set Support
	DBCS and National Language Support

	Troubleshoot International Objects

	Text Framework
	Text Creation and Manipulation
	Text Boundaries
	Text Storage
	Strings and Buffers
	String Formats
	Comparison of IText and IString
	Work with IText Objects
	Create an IText Object from char or IString Data
	Create a Styled Text String
	Edit Character Data in an IText Object
	Extract char* Data from an IText Object
	Text and Style Run Iteration
	Query and Modify Styles in an IText Object

	Work with IString Objects
	Create Strings
	Copy Strings
	Concatenate Strings
	Extend Strings
	Format Strings
	Determine String Lengths and Word Counts
	Do String Input and Output
	Find Words or Substrings within Strings
	Replace, Insert, and Delete Substrings
	Test the Characteristics of Strings
	Convert between Strings and Numeric Data
	Convert between Strings and Different Base Notations

	Styles
	Styles and Style Sets
	Style Classes
	Style Propagation
	Character Data

	Summary of Text Framework Classes

	The Unicode Standard
	Create a Unicode Application
	Unicode Support and the IUnicode Class
	Character Values
	Character Properties
	Identify a Character's Properties
	Identify a Character's Script
	Find Characters with Specific Properties

	Summary of Unicode Support Classes

	Chapter 7. Error Handling, Tracing, and Testing
	Exceptions in the IBM Open Class
	General Exceptions
	Signal Exceptions
	Handle Exceptions
	Derive Your Own Exceptions

	Use Trace Macros
	Application Testing Overview
	Test Framework Components
	The ITest Base Class
	Create a Base Test Class
	Set Up the Environment
	Test with Input Arguments
	Get Metainformation
	Example: A Simple Test

	The Decision Function
	Run a Sequence of Tests
	Run Tests with Decision Functions

	Timing Tests
	Structure of Timing Loops
	Accuracy and Tolerance of Timing Tests
	Success Criteria and Precision of Timing Tests
	Example: Perform Timing Tests

	Protocol Tests
	Perform Protocol Tests

	Auxiliary Test Classes
	Print, Display, and Store Test Results
	Display Internal Test Information

	Test Macros
	Example: Use Test Macros

	Chapter 8. Collection Classes Overview
	Collection Characteristics
	Types of Collections
	Examples of Using the Collection Classes
	Hierarchy and Design of the Collection Classes
	Class Template Naming Conventions
	Implementation Variants
	AVL Tree
	B* Tree
	Diluted Table
	Hash Table
	List
	Table

	Possible Implementation Paths
	Choose One of the Provided Implementation Variants
	Replace the Default Implementation

	Instantiate the Collection Classes
	Implement Bounded Collections

	Addition, Removal, and Replacement of Elements
	Add an Element to a Collection
	Remove an Element from a Collection
	Add and Overload Member Functions
	Example: Abstract Class Hierarchy

	Copy and Reference Collections
	Implement Element- and Key-Type Functionality
	Define Equality Relation
	Define Key or Element Equality
	Define an Operations Class
	Manage Memory with Element Operation Classes

	Iteration
	Locate and Access Elements with Cursors
	Iterate over a Collection with Cursors
	Iterate over a Collection with allElementsDo and Applicators

	Smart Pointers
	Construct Smart Pointers
	Choose the Appropriate Smart Pointer Class
	Use Automatic Pointers
	Use Element Pointers
	Use Managed Pointers

	Thread Safety and the Collection Classes
	Insure Thread Safety with Guard Objects
	Instantiate a Guard Object
	Use Guard Objects

	Support for Notifications
	Use Collection Notification

	Collection Class Library Exceptions
	Enable Exception Checking
	Handle Exceptions with Cursors

	Troubleshoot Collection Class Problems
	Compilation Errors Indicating a Problem with Constructors
	Compilation Errors Indicating that an Element Type or Function is not Declared
	Compilation Errors about Multiple Definitions
	Compiler Warning of an Error in istdops.h
	Link or Bind Errors about Multiple Definitions
	Link or Bind Error Indicating istdops.h
	Unexpected Exception Tracing Output
	Unexpected Results when Adding an Element to a Unique Key Collection
	Unexpected Results when Using Cursors

	Chapter 9. Math
	The IBinaryCodedDecimal Class
	Represent Numerical Quantities Using IBinaryCodedDecimal
	Perform Calculations Using IBinaryCodedDecimal
	Convert Between IBinaryCodedDecimal and Other Numeric Types
	Assign One IBinaryCodedDecimal to Another
	Assign an IBinaryCodedDecimal to a long
	Assign an IBinaryCodedDecimal to a double

	The IDecimal Class
	Construct IDecimal Objects
	Perform Operations on IDecimal Objects
	Convert IDecimal Objects
	Exceptions Thrown by IDecimal Objects
	Intermediate Sizes of IDecimal Objects

	Complex Mathematics Library Overview
	Review of Complex Numbers
	Header Files and Constants for the complex and c_exception Classes
	Construct complex Objects

	Mathematical Operators for complex
	Use Mathematical Operators for complex

	Friend Functions for complex
	Use Friend Functions with complex

	Input and Output Operators for complex
	Use complex Input and Output Operators

	Error Functions
	Handle complex Mathematics Errors

	Example: Calculate Roots
	Example: Use Equality and Inequality Operators

	Notices
	Programming Interface Information
	Trademarks
	Standards

	Glossary
	Bibliography
	Bibliography
	z/OS
	z/OS C/C++
	z/OS Language Environment
	Assembler
	COBOL
	PL/I
	VS FORTRAN
	CICS
	DB2
	IMS/ESA
	QMF
	DFSMS

